💬 The Harvester: ultimate power supply for the Raybeacon DK



  • @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    This all makes me think that there are basically two combos to choose from:

    Not quite. After closer look I've found the AM-5610 outdoor panel of suitable size - only 25x20mm. The panel is capable to produce up to 18mW.

    Other interesting panels are: AM-1606 as used on the Cypress BLE, 15x15mm, AM-1456 which is close to SolarBit by size, 25x10mm, and AM-1312 which is exactly of the same size the SCNE I have.


  • Hero Member

    @Mishka I suppose the SC-3722-9 may be too big for your project, but it's worth mentioning because it performs pretty decently under indoor lighting, and you can extract them for cheap from $1 solar keychains, which are widely available. That's all subjective though. I'm not sure how they compare by the numbers.

    https://www.aliexpress.com/item/32774648368.html?aff_request_id=d8e42a07ed7f4345b1133c9f4f249fed-1581813033932-00280-_rIgCIO&aff_platform=api&cpt=1581813033932&sk=_rIgCIO&aff_trace_key=d8e42a07ed7f4345b1133c9f4f249fed-1581813033932-00280-_rIgCIO&terminal_id=abc87087a3a64790a6abd96b2333811b


  • Hero Member

    This diode is a bit expensive and too large for your project, but for experimental purposes it seems like the cat's meow as a blocking diode when collecting currents at tiny voltages: http://www.ti.com/lit/ds/symlink/sm74611.pdf

    Just 26mv forward voltage drop at an 8a current, and just 0.3ua reverse leakage current at a voltage of 28v. Obviously, those numbers would be far less for the currents and voltages that we're dealing with. It seems to be very nearly an ideal diode, or at least the closest I've ever seen to that.



  • Summarizing the work on the SPV1050 (irrelevant to other ICs mentioned in this topic) please let me publish revision 0.9 of the Harvester board. It addresses some issues found on the previous boards, and introduces number of important changes.

    The most noticeable one is that the board now supports both boost and buck-boost DC-DC configurations of the SPV1050. After reviewing some tiny PV panels it was indetified that the maximum working voltage for a tiny panel is about 3V which means the boost mode is more suitable to do the job. Also, tiny high voltage panels (like some SolarBIT models) have very limited current capabilities and in low light conditions simply can't supply enough power in order to make the harvester chip work. It's also important to note that the cold-boot voltage for boost DC-DC is 0.55V which is only about 20% of maximum 3V voltage a panel can gain - please compare that with 2.6V and 4.4V respectively for some most advanced cells. Finally, if in the boost mode the SPV1050 supports TEG modules.

    Therefore the BOM was adjusted to the boost configuration with the following thresholds:

    Symbol Parameter Value
    V_uvp Battery under voltage protection threshold 2.4V
    V_eoc Battery end of charge voltage 3.1V
    V_oc Source open circuit maximum voltage 4.7V
    V_mp Maximum power point voltage 78% * V_oc

    Please note, in the boost mode the SPV1050 will effectively set V_eoc = V_in for all V_in values greater than 3.1V which may cause damage to the battery or the nRF52 SoC. To prevent the negative impact please carefully consider the source.

    If the only source you have is a high voltage solar panel, it's possible to adjust the R1-R3 resistors ladder (please refer to the SPV1050 datasheet) and switch the Harvester board to buck-boost mode as follows:

    Harvester DCDC config

    Hint: If the solar panel is really big (like 2W / 12V or so) and you don't need MPPT, it's possible to close the USB Charge jumper and connect the panel to VBUS and GND solder pads in order to employ the 3.2V USB LDO.

    The MPPT fixed voltage ratio is set to 78% with resistors R2=2.2M and R3=8.06M. For a TEG module with MPPT ratio at about 50% just replace both R2 and R3 with 5.2M resistors.

    Other notable changes included into this release are:

    • Fixed some silk layer errors
    • The MIC5205-3.2 LDO got missing input filtering capacitor
    • The current limiting resistor between the SPV1050 and the tantalum capacitor has been removed
    • Connection to the ground plane in some isolated areas was improved

    And last, but not least, I'd like to thank the MySensors forum and in particular @NeverDie for his tremendous contributions. It's pure fun to discuss tiny boards with tiny harvesters working from tiny power sources 🤙


  • Hero Member

    @Mishka Looks like a winner. 👍 Once you put it together I'll be interested to hear what the lowest light levels are that you're able to run it at and which solar panels/cells you end up liking the best.

    I think there's a good chance it will outperform the eval kits from enOcean, Cypress Semiconductor, Cymbet, and others that rely on a high cold start voltage. In order for them to win they would need to harvest at a lower power than what your chip can manage but somehow also at the higher voltages and with enough power that their chips require, and I'm not sure whether or not those two conditions can be generated simultaneously by real world solar panels.



  • @NeverDie Well, the SPV1050 has a nice set of features I need and offers impressive flexibility in a small package. However, when speaking about efficiency the AEM10941 seem outperforms it in every single bit.

    The current design reached some level of stability so I think the AEM10941 is what I should try next.



  • @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    The current limiting resistor between the SPV1050 and the tantalum capacitor has been removed

    Why removing the resistor? Why not placing it after the (optional) Tantal to protect a downstreamed Batt or Cap?



  • @iiibelst There is one. The R7=549Ω is limiting current between the tantalum capacitor and the extension socket. Its purpose is to keep it under 2mA for ML2032. You can bypass it with relevant solder jumper on the board bottom.

    The dropped 50Ω resistor was previously located between SPV1050 and the tantalum capacitor.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    The current design reached some level of stability so I think the AEM10941 is what I should try next.

    Yes, at a 3 microwatt minimum, that chip may be very tough to beat. It has the same 380mv cold start voltage as the ADP5091, but it requires only half the energy. With these tiny solar panels that extra margin might really make a difference under dim indoor lighting conditions.

    I guess it's no accident that the AEM10941 is the newest chip. Perhaps it's the constant improvements in cmos technology that it leverages. In which case.... we can probably look forward to even better chips in the future! For sure solar cells and panels continue to improve their efficiency. The markets are finally big enough to support the required R&D for continual improvement. And the mcu's and radios are constantly improving their efficiency so less power is required. It's great to be in the nexus riding a few waves like this, where we can get the benefit of multiplying the improvements together.



  • @NeverDie That's all true.

    Please also note the AEM10941 can regulate up to 5V of input when ADP5091 upper limit is 3.3V.

    Again, when speaking about BLE, a beacon (as a low-power application example) has to advertise at least once every 1000ms to be generally usable. For nRF52840 it approximates to about 50µW of power consumption. By adding up some microwatts of the harvester itself it may be safe to expect a panel should be able to produce 60-70µW of energy in average. In turn, this means that those 3µW or 15µW are rather an edge scenario, and there is must be a timeframe when the system can collect all the required electricity. Such, when running from a daylight it should be expected that in February the harvesting will be efficient for at most 8 hours a day. The system must be able to offer minimum (24h/8h)*70µW = 210µW during the light period of time. For the reference, a couple of my IXYS panels can provide only about 150µW when located in 1m from window on the north side.

    From the experiments, to me it currently looks more not about possible minimums, but rather about higher efficiency at nominal values. But I admit the difference between 3µW and 50µW doesn't look big either. The sleeping current of the nRF52 is already less than 3µW, so perhaps some time the source and the load can converge.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Again, when speaking about BLE, a beacon (as a low-power application example) has to advertise at least once every 1000ms to be generally usable.

    I read in a couple different places that the maximum bluetooth advertising interval is 10.24 seconds (i.e. 10x your assumption) so if the rest of your math is right that should provide ample headroom for being bluetooth compliant.



  • @NeverDie Yeah, there are also scenarios when a beacon advertises only when it was charged enough - it may wait for several hours before send a packet. But that's rather uncommon application. A typical beacon usually advertises every 100 ms to 1000 ms - this way it can be located quick enough.


  • Hero Member

    Closing the loop: today I finally received the sunpower solar cell, so I was able to take a closer look at it. Basically, the traces on the back are interdigitated. So, it looks as though it could be cut along the horizontal axis (if, say, the connection pads are on the left and right) almost as narrow as whatever you might want to. However, it would be ruined if you were to cut along the vertical axis: one pad would remain fine, but all the traces to the other pad would be severed. Maybe in theory they could be re-attached to a new pad with a lot of careful soldering, but that doesn't seem very practical, as the pitch between traces is quite narrow. On the other hand, if one were to use a custom flex film pcb with connection traces that aligned to the severed traces, it might be possible, but still a nontrivial amount of work.

    Looked at from the point of view where large surface area is OK: one of the nice things about these cells is that they are reasonably inexpensive considering their 5"x5" width and height, and yet they are quite thin and still easy to connect. However, I suppose they maybe should be coated with something to protect them. A 2K automotive epoxy spray would probably be ideal, but perhaps even a hard automotive acrylic lacquer would be sufficient, as either should be both non-yellowing and moisture proof. Unfortunately, not much seems to be written about what types of coatings work best. Obviously, the commonly used chinese epoxy solar cell coating would be a poor choice, as that stuff degrades under uv and yellows/browns and clouds up quite rapidly.



  • @NeverDie Interesting. I think the cell may be carefully cut with laser and then properly remetallized. Perhaps can be done with a typical tin based solder paste with some proper flux (I don't know, originally some kind of silver paste is used). Fixing the cell itself into epoxy should be easy.

    The nice thing about the process is that it should be virtually possible to create cells of arbitrary shape. However, in order to get usable voltage it might require to build a panel.


  • Hero Member

    @Mishka On second thought, if you were cutting it to a small size then there wouldn't be many traces remaining to be reconnected, so from that point of view it might actually be practical.

    For me it's academic because I don't own a laser cutter, and I have no idea what kind of power would be required to cleanly cut one of these cells even if I were to buy one for that purpose. I'd be interested to know though. Even 20 watt lasers are pretty cheap these days. Hooking a laser up to a CNC, which I do have, to execute the cut would be fairly easy.



  • @NeverDie My nearest laser service costs about 3-4 dollars for one running meter, can cut 2 mm steel, so never thought about that. On the other hand, with enough number of passes it virtually should be possible even on a DIY CD-ROM laser engraver, especially if mounted on a CNC which is usually more precise than lasers.

    I'm expecting that at least three crystals will be required to gain 1.5-2V. For a circle, it sounds reasonable to cut three or four sectors of equal shape. Maybe a 3D printed pallet can be used with top layer protected by epoxy. But I think for the best result additional metallization will be required anyway.


  • Hero Member

    @Mishka Since you could convert one large cell into lots of tiny cells, it might actually be cost effective.

    I once looked into directly etching the copper on pcb's using a laser mounted cnc, but apparently that requires a much higher power and more expensive laser than what's commonly used by hobbyists. AFAIK, simply running a low power laser over the same isolation traces over and over with just a low power laser won't get you anywhere. I'm guessing that's because of both the copper's reflectivity as well as pretty excellent heat dissipation to the surrounding copper. It may be that a solar cell wouldn't be as difficult, but I couldn't say. For sure your cutting service's laser should be able to handle it though. Please do post how it goes if you decide to pursue it.

    For POC you could cut the cell using just a box cutter or something like that. What happens is that the cell shatters near the cut mark, but enough is left over that the cell still works. So, it's not really the proper way to do it, but it could be done, at least for larger cells. It's hard to know a priori how far the shattering/cracking might travel in a small cell. Maybe not much useable area would be left. Or maybe there would be. I guess that would require experimentation to find out. I only know what I saw in this youtube video:
    Cutting Supower Maxeon Solar Cells? - Mikes Inventions – 06:37
    — Mikes Inventions

    His was just a rough and ready test to see what would happen. Perhaps cutting it on a circular saw with a suitable tile cutting blade, tightly sandwiched between lots of rigid support might cause less shattering/cracking. Or perhaps borrow techniques used for cutting thin glass. Perhaps multiple passes with a diamond drag bit on a CNC could do it with minimal shattering/cracking: https://www.amazon.com/Diamond-Spring-Loaded-Engraving-Degree/dp/B07F9L62C3/ref=sr_1_6?keywords=diamond+drag+bit&qid=1582661720&sr=8-6
    I think that might stand a decent chance of working. However, aside from a POC, it's easy to see why a laser would avoid these problems altogether, and without producing dust.


  • Hero Member

    Art Resin tested a large number of different epoxies, and it seems that all of them yellowed to some degree over time, but some a lot more than others:
    Epoxy Resin Yellowing Third Party Testing from ATLAS Labs – 01:46
    — ArtResin

    Of course, since it was a test designed to make Art Resin look good, perhaps they omitted epoxies that really do never yellow. I just don't know which ones those would be. Eight weeks, which was the limit of their study, doesn't seem like a particularly long time.



  • @NeverDie Wow, nice collection! How do you think, may it be reasonable to glue cut cells to a quartz or glass base? Would it compromise effectiveness?

    IMHO the right way to cut them is either laser or high speed CNC. Also, CNC cut crystals may require extra polishing.

    Just asked a couple of local vendors for a single cell, waiting for their reply. BTW those cells are usually of 18-19% energy efficiency, so the only way to beat Amorton or IXYS is to cover larger areas.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Also, CNC cut crystals may require extra polishing.

    I think polishing would probably damage them. These cells are different than generic monocrystaline cells. Allegedly, at a microscopic level, they are built using tiny pyramids to increase their surface area. I can believe it, because when taken out of the package they look a bit like velvet. For that reason they apparently scratch extremely easily. The two that I received were in their raw form and totally unprotected, so I am right now in the middle of applying layers of an acrylic lacquer to them as a guard against scratching the active surfaces.

    A water clear urethane coating might have been a better choice, as it's probably harder, but acrylic lacquer is all that I had on hand. I hope to handle differences in co-efficients of thermal expansion by coating both the front and the back equally. Otherwise, it will probably warp.

    I soldered the dog-bones to them. I used rosin core solder, because that's all I have on hand, but next time I think I would use pure solder without the rosin, because I'm not sure whether the resin will interfere with a protective coating. I'll have a better idea about that when I finish coating this batch. Because of the cell's fragile nature and tendency toward scratching, I don't have the guts to clean off the resin with IPA without a protective layer in place. Perhaps I should, though, after the coating on the front finishes curing, and before coating the back of it.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    BTW those cells are usually of 18-19% energy efficiency, so the only way to beat Amorton or IXYS is to cover larger areas.

    The C-60, gen3 solar cells I received supposedly have a higher efficiency than that: https://us.sunpower.com/sites/default/files/media-library/spec-sheets/sp-sunpower-maxeon-solar-cells-gen3.pdf

    That's the main reason why I ordered them.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    How do you think, may it be reasonable to glue cut cells to a quartz or glass base?

    Yes, totally reasonable. It would protect them from breaking.



  • @NeverDie No no, by polishing I mean only the edge after cutting. I'd prefer to have it nice and clean just to avoid possible impact of cell layers which might cause shortenings. It's also very interesting to know that the cell has 3D surface - cool.

    How easy it was to solder anything to the cell? Have you tried to solder anything to crystal raw surface? My concerns is that after the cell will be cut it will lose interconnection of conductors so it would be nice to restore the metallization layer.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    How easy it was to solder anything to the cell? Have you tried to solder anything to crystal raw surface?

    I soldered on the dog bones (a kind of bus connector) to the edges and gave each cell a brief test before applying a protective coating. They each work. That's about all I know. What's a bit confusing is that the solder pads look as if they they are made out of solder mask, but clearly they must be some kind of white conductive material that doesn't look like metal. I'm not exactly sure what's going on with that. I haven't yet found a "how-to" guide for this type of cell that explains anything in any detail. Its construction is completely different from any other kind of solar cell I've tried.

    I don't know what country you're in, but in the US the ebay sellers fullbattery and theHeartOfTheSun sell them at reasonable prices. Do an ebay search for C60.



  • @NeverDie The pads are usually made of silver. If thin enough it may look like the crystal. But the crystal itself may also be light enough - they produced with painting added for better light absorption.


  • Hero Member

    Not really surprising: they do much better with sunlight than with LED or fluorescent light.


  • Hero Member

    At 28lux of really lousy LED lighting, a C60 cell produces 0.66ma short circuit current and 96mv open circuit voltage. So, maybe not so terrible after all.



  • @NeverDie My thought was that amorphous silicon (a-Si) cells have better spectral response to artificial light than crystalline cells (c-Si). However, after investigating this a little bit I've found that this doesn't seem to be true. Instead, it's shown everywhere that c-Si cells have better response to every wavelength:

    spec-response.png

    Moreover, when the light source has wide spectrum (like the sun or an incandescent bulb), c-Si panels take the advantage and produce significantly more energy from the same source, and this all explains why a-Si cells are almost two times less effective than c-Si (roughly 8% vs 20%). Please note, because of narrow spectrum a LED lamp will be obviously inefficient for a PV panel.

    But at the same time, there are reports of a-Si cells being 4x more effective in low light than crystalline. Indeed, both crystalline and poly-crystalline cells may degrade a lot:

    cell-eff.png

    The seem happens due to low parallel resistance of c-Si type cells. Shunt resistance of amorphous cells is naturally higher which results to less degradation of Vmpp and hence higher efficiency in low light conditions. Some paper show the shunt resistance rather low, when other mentions it relatively high, but at extremely low power conditions even 20 kOhm may be too much.

    In short, a-Si cells are tend to produce fairly better results in very low light environments. But they can't leverage from wide spectrum sources, yet are subject to the Staebler-Wronski effect when exposed to direct sun (which can be reversed to some extent by heating the panel). In case if the light source is bright enough (around 1000 lx and above) a c-Si pannel should be preferred.

    Finally, there are some other kind of solar cells, in particular those made from III-V semiconductors compound and promising even better low light performance.


  • Hero Member

    @Mishka Have you found a good candidate for an amorphous cell to try? I see a lot of cells/panels advertised as amorphous, but without a datasheet showing performance under low light conditions, selecting one seems a bit like throwing darts at a map.

    I've seen some flexible amorphous panels that claim to stack materials with different light sensitivities to get a better spectral response:
    alt text
    But are they any good, or is it just puffery?

    I've seen articles claiming that CIGS have efficiencies of 20% to other articles saying that CIGS are barely better than amorphous. Some also make claims that CIGS perform well under "low light," but without the detailed datasheet, there's just not much to hang one's hat on when it comes to selecting one to try....

    And then there's powerfilm, which I had linked to earlier above, which claims to be optimized for 200 lux and below. At least they were selected by TI for TI's BLE demo kit, so presumably they were a good choice, at least at the time the choice was made....

    Is amorphous better than these other choices at low light, and if so, which amorphous solution has the best efficiency under low light?

    NREL seems to be an objective independent source for testing, but for high brightness conditions (according to wikipedia, the standard test conditions for solar cells are "the AM1.5 spectrum as the reference. This air mass (AM) corresponds to a fixed position of the sun in the sky of 48° and a fixed power of 833 W/m2. "):
    https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200218.pdf
    https://www.nrel.gov/pv/cell-efficiency.html
    At least on paper, the multi-junction cell efficiency looks really quite amazing. There are some for sale on ebay in the $20-$35 dollar range, depending on quantity. So, if you absolutely had to have one to meet your size requirements, there they are. No datasheets though, so again, just a cat in a bag. One claims 35% efficiency. No indication at all as to low light efficiency.



  • @NeverDie Right, the good thing about thin-film solar cells that they can be relatively easily stacked up to gain better efficiency. Don't know about CIGS, but some III-V compounds like GaAs are known to be very effective in low light environment (please see the last paper in my previous post). Such, some manufacturers are making tripple-junction GaAs cells with power effectiveness up to 15 μW/cm² at 200 lx - just compare it to Amorton which have it at about 6 to 8 μW/cm² under the same conditions. Sounds like a huge difference, especially taking in account the Panasonic offers rather high quality cells. Unfortunately, the cost is as high as the satellites carrying these cells.


  • Hero Member

    Last night I hooked up the keychain solar cell to my simple solar circuit, and at 5 lux it could still charge a 100uF capacitor to 2.7v and blink a red led without any boosting. It looks like it's probably amorphous. So, pretty good performance considering its low cost, but perhaps not as small as what you're looking for.



  • @NeverDie Well, 5 lux is ridiculously low. It's about the same illuminance you may have at 45 cm from a candle. Are you sure your lux meter is working? 🙂

    Interesting to measure Voc and Isc at that light. What's dimension of the cell?


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Are you sure your lux meter is working?

    I'm not at all sure that it's accurate, but that's what the lux meter said. It's one of these: https://www.amazon.com/Dr-Meter-LX1330B-Digital-Illuminance-Light/dp/B005A0ETXY/ref=sr_1_3?keywords=lux+meter&qid=1582903100&sr=8-3

    I've misplaced the manual, but someone posted this on amazon as to its specs:
    The specifications in the instruction manual reflect the following:
    Light-measuring level from .1Lux to 200,000Lux
    Accuracy +- (3%rdg+10dgt) <=20,000Lux/2,000FC
    +- (5%rdg+10dgt) >= 20,000Lux/2,000FC
    Repeatability +-2%
    Photo detector lead length ~150cm
    Spectral Sensitivity- curve shows mostly betweeen 500nm and 650nm

    Perhaps I should get something better, or else maybe find some way to calibrate it. What is it that you're using?

    I assume that for "Accuracy +- (3%rdg+10dgt)" it means plus or minus 3% of the reading, which is fine. Not sure what the 10dgt means though. If that means it could be plus or minus 10 lux, then I guess it's useless for measuring 5 lux.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    What's dimension of the cell?

    37mm x 22mm

    alt text



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    I'm not at all sure that it's accurate, but that's what the lux meter said.

    Wow, relatively to my built into the smartphone Sensortek STK3x1x ambient light sensor this one looks very serious.

    The cell has surprisingly high voltage (2.7V) at so low light. My amorphous cell has Voc = 1.8V at 50 lux (2 m from a fluorescent lamp). Maybe yours has many more cells in series. I'm going to order some Amorton panels of suitable size (less than 25x25), it will be interesting to compare them with my other amorphous cell.

    I'm also wondering would it be good o bad to connect two cells of different types - one amorphous and one crystalline.


  • Hero Member

    @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    If that means it could be plus or minus 10 lux, then I guess it's useless for measuring 5 lux.

    Well, maybe not completely useless. If the specs are valid, then it's surely less than 20 lux, assuming I'm giving the right interpretation to "10dgts".


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    I'm going to order some Amorton panels of suitable size (less than 25x25), it will be interesting to compare them with my other amorphous cell.

    I'm thinking of ordering the AM-1816CA, which AFAIK is the largest one rated for indoor and low lux. https://www.mouser.com/datasheet/2/315/panasonic_AM-1816CA-1196985.pdf
    My only reason for ordering the largest would be to see what the limit is on how dim things can get in that series and still have something that can function. Maybe ordering smaller panels would make more sense, though, as they could always be added together in parallel or series. Yeah, that would make more sense I think.

    In addition, if you let me know what models you order, I may order one of the same too just so we can have something in common to compare results.

    At very dim levels I notice that my Fluke 87v multimeter actually draws too much current off the solar cell to get an accurate open circuit voltage measurement. So, I'll have to rig up some kind of voltage following op amp buffer as an aid to doing these measurements.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    I'm also wondering would it be good o bad to connect two cells of different types - one amorphous and one crystalline.

    Only one way to know for sure, but I would guess that the crystalline one would drain off the current produced by the amorphous one (based partly on your theory as to why amorphous is better in low light). Worth a shot though: maybe as a compromise solution you can have the best of both worlds.

    Thinking out loud here, I have read about some research solar harvesters where they use a separate "pilot" solar cell to power the control electronics past the cold boot threshold. These days, with nanoamp current drains from control components, it would mostly need to produce adequate voltage and not much current, so a simple approach would be optimize the pilot configuration for exactly that--perhaps putting a few tiny cells in series. Perhaps any extra current could then spill over into the main accumulating capacitor. That would be yet another way to use more than one type of panel.

    The ideal solution would be if there were some way to re-configure multiple cells in series or parallel depending on the lighting conditions. It could default to series to push past the cold start and then switch to parallel (or some appropriate combination of series and parallel) for the energy harvesting. I haven't seen much on that topic, but I'd be keen to know if there are ways to do reconfiguring that consume very little power in overhead.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    less than 25x25

    That probably limits you to a couple of AM-1456 (25mm x 10mm) or a single AM-1606 (15mm x 15mm) as your only choices.



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Only one way to know for sure, but I would guess that the crystalline one would drain off the current produced by the amorphous one (based partly on your theory as to why amorphous is better in low light). Worth a shot though: maybe as a compromise solution you can have the best of both worlds.

    I mean connect them in series with bypass diodes so the amorphous cell can be used to bootstrap the harvester, and then crystalline cell will be workhorse during the day. Unfortunately, can't check it right now - left all my cells in the office.

    Thinking out loud here, I have read about some research solar harvesters where they use a separate "pilot" solar cell to power the control electronics past the cold boot threshold.

    That's a smart idea. Perhaps connect a dedicated tiny charge pump and an amorphous panel parallel to the buck-boost harvester storage capacitors?

    The ideal solution would be if there were some way to re-configure multiple cells in series or parallel depending on the lighting conditions. It could default to series to push past the cold start and then switch to parallel.

    A mechanical device? 🙂



  • @NeverDie Going to order 1 x AM-1606, 2 x AM-1456, 1 x AM-5610, and 2 x KXOB25-05X3F.



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    At very dim levels I notice that my Fluke 87v multimeter actually draws too much current off the solar cell to get an accurate open circuit voltage measurement. So, I'll have to rig up some kind of voltage following op amp buffer as an aid to doing these measurements.

    Heh, we seem dived below 1 µA / µW level here 🐟 🙂


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Heh, we seem dived below 1 µA / µW level here

    Looking at the datasheets for the op amps I have on hand, I'm guessing that the LTC2063 will allow an accurate measurement: https://www.analog.com/media/en/technical-documentation/data-sheets/LTC2063-2064.pdf I'll try it after my uv glue arrives.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Perhaps connect a dedicated tiny charge pump and an amorphous panel parallel to the buck-boost harvester storage capacitors?

    Maybe, but which one? I would have suggested this one, but it's no longer available: https://media.digikey.com/pdf/Data Sheets/Seiko Instruments PDFs/S-882Z.pdf


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Wow, relatively to my built into the smartphone Sensortek STK3x1x ambient light sensor this one looks very serious.

    Looks as though you can get a fairly inexpensive digital light sensor from adafruit that will tell you the lux level: https://www.adafruit.com/product/4162
    https://www.amazon.com/Adafruit-4162-VEML7700-Lux-Sensor/dp/B07S9TD2W1/ref=sr_1_1?keywords=Adafruit+VEML7700&qid=1583129068&sr=8-1

    It doesn't have the little translucent plastic dome on it though that one typically finds on lux meters. Not sure how important that is or isn't. Seems like such domes would shade the light and skew low light level readings, so maybe you'd be better off without it.

    I may get one myself as a check on my lux meter.

    There's also this one, a little cheaper: https://www.amazon.com/Adafruit-TSL2591-Dynamic-Digital-ADA1980/dp/B00XW2OFWW/ref=sr_1_1?keywords=Adafruit+lux+sensor&qid=1583129190&sr=8-1
    I checked the adafruit library, and it prints sensor readings in lux.

    Not sure which one is more accurate.


  • Hero Member

    I built the op-amp circuit, and now the open circuit readings on a solar cell are much higher than when I was taking the readings with a regular multimeter. As long as I can keep the control logic current at just a couple hundred nanoamps or so, I think I'll probably have enough voltage under even very dim lighting that I doubt cold start will be an issue.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    scne-ixys-data.png

    What method or methods are you using to characterize your solar cells? I'm guessing in this instance that for the different illumination levels you are recording the open circuit voltage and the short circuit voltage? So as to at least try to compare apples to apples, I want to collect data on my cells in the same way that you are.

    Another, complementary approach is described here: "The key characteristic of a solar cell is its ability to convert light into electricity. This is known as the power conversion efficiency (PCE) and is the ratio of incident light power to output electrical power. To determine the PCE, and other useful metrics, current-voltage (IV) measurements are performed. A series of voltages are applied to the solar cell while it is under illumination. The output current is measured at each voltage step, resulting in the characteristic 'IV curve' seen in many research papers. " https://www.ossila.com/pages/solar-cells-theory I suppose with this approach a series of curves could be produced, each for a different illumination level. Since doing that would be a lot of work, I'd like to somehow automate the testing process, but first I need to either know or decide what the process is that I want to automate.



  • What method or methods are you using to characterize your solar cells? I'm guessing in this instance that for the different illumination levels you are recording the open circuit voltage and the short circuit voltage?

    @NeverDie exactly. That was a quick and dirty measurement using a multimeter. The P (µW) value was calculated as V * I * 0.8 (MPP assumed 80%, I must multiply to 0.8^2 instead). My intent was to describe the panels in dependency of different illuminance (which must be also denoted by E instead).

    Finding MPP on IV curve is the right method to characterize a cell. But that would require fixing illuminance at some point (and is more complicated), when I was more interested in different light conditions. Most cells are rated at 200 lux indoors, and one sun (more than 100k lux) outdoors. Perhaps 50 lux indoors (a typical light at home) and 1000 lux (cloudy day) is more practical for low-light purposes so I could trace IV curves for the cells I ordered at that illuminance levels.

    Looks as though you can get a fairly inexpensive digital light sensor from adafruit that will tell you the lux level

    It seems my phone uses Sensortek STK3310 or similar. At low light might be as accurate as those two, but is limited at higher levels indeed. Would be nice to replace it with more reliable solution, will try to find out a luxmeter in a local fablab or get one of those you've suggested, thanks!



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    I built the op-amp circuit, and now the open circuit readings on a solar cell are much higher than when I was taking the readings with a regular multimeter. As long as I can keep the control logic current at just a couple hundred nanoamps or so, I think I'll probably have enough voltage under even very dim lighting that I doubt cold start will be an issue.

    There is the Ricoh R1800K which consumes just 144nA and can start from a 0.72 µW source. It requires at least 2V to operate, but schematic is very miniature - only three more components needed.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    R1800K

    Interesting chip. On the one hand, it seems aimed at small solar cells because of the low quiescent current and because it can't handle more than 1 or 2ma tops. On the other hand, it doesn't have MPPT but instead wants you to pick a single MPP voltage (out of the choices that RICOH provides) that it should operate at. Not sure how good being tied down like that would be in actual practice. Maybe it would be fine in an office environment where you could perhaps assume steady, uniform lighting...?


  • Hero Member

    I switched to a deadbug build using an MCP6S22 opamp for a buffer because I was getting too much conductance/noise on a pCB with the other op amp. Everything has to be soldered together, because otherwise current gets lost through the connectors when dealing with such miniscule currents.

    Having done that, for the keychain solar cell I measured open circuit voltage at 2.66v at 1 lux (according to my lux meter that I mentioned above, so take that measurement for whatever it's worth) and a short-circuit current of 88na, according to a uCurrent Gold (but with the voltage measuring opamp circuit still soldered into place).

    This has me wondering now how much of a voltage (non-boosted) it could eventually generate onto a capacitor, so I suppose that's the next thing to try. I'll try it first with my simple solar charger: https://www.openhardware.io/view/620/Supercap-solar-charger
    since that's easy, but for a more accurate measurement I may need to construct a deadbug equivalent using just a diode and capacitor. That would be a lower bound for the dead simple approach which then perhaps some harvester could improve upon, though I'm not sure any of the commercial energy harvesters are spec'd at that low of a power.

    This also explains why measuring the voltage of the solar cell with just a volt meter (with no op amp circuit to help it) is hopeless at such low light levels: 2.66v divided by 10MOhm is 266 nanoamps, where 10MOhm is the typical digital volt meter input resistance. i.e. the 266 nanoamps drain through the volt meter would be approximately 3x the amount of current that the solar cell can generate, thereby causing a large error in the voltage measured by the DMM.

    Edit2: I connected a 100uF ceramic capacitor in parallel with the solar cell (I didn't bother with adding a diode), and it charged up to 2.778v. Somehow that's slightly higher than the previously measured open circuit voltage of 2.66v. Not sure how that is, but perhaps the orientation of the solar cell was a little more favorable when this measurement was taken. In any case, I think whatever the open circuit voltage is, you can probably charge up to that amount with any size low leakage capacitor that you want to use. 😀 So, from this point of view, choosing a solar cell which generates high open circuit voltages in very dim light is perhaps more important than any other decision if what you want is something that can get past startup even if the available power is only minuscule.

    The only thing needed is a simple control circuit which, if possible, consumes little or no energy until it reaches the desired voltage range, whereupon a more sophisticated control circuit can take over. Something like a schmitt trigger might work, but it would need to draw extremely little current, which not all schmitt triggers do, especially as they approach the threshold voltage. Any ideas?

    Perhaps something like: https://hackaday.com/2018/07/19/energy-harvesting-design-doesnt-need-sleep/
    or perhaps a solar engine control circuit might work: http://beambuilder.blogspot.com/p/solar-engines.html
    or...???
    Since they all do more or less the same thing (charging a capacitor to a threshhold voltage and then "turning on"), the challenge would be to find (or invent) a circuit which achieves that result but while consuming the absolute least amount of power that current technology allows. A lot of the published designs use older technology, and so I suspect better possibilities exist if leveraging newer, more capable components.



  • @NeverDie Wow, I'm really surprised with so high voltage of the panel. Thank you for sharing the measurements!

    My understanding is that OC voltage is defined by amount of free electrons in the depletion zone, and hence by the width of the zone. When in the light, more electrons will fill the zone, but there seem to be some saturation threshold limiting the max voltage. It would be interesting to somehow measure the electric field in the full absence of light. Also, capability to emit new electrons in the depletion zone defines the max current from the cell. It looks like crystalline cells can do it more effectively than amorphous, but the latter have wider depletion zone in the dark.

    I don't know how to use so ultra-low current sources. The harvester should be able to work from 100 nanoamps or below. This limits design to a linear charger only (at least at frontend) - anything more complex (like a boost or buck circuit) would require higher quiescent current which will collapse the cell.

    A MOSFET may draw as low as few nanoamps so virtually it could be possible. The PV cell needs to be isolated from the load to prevent voltage drop on the FET which may cause it defunct. Perhaps an isolated capacitor will be required to sustain the FET state while input capacitor releases its charge. The FETs may require resistors to shift voltage level, but again, they need to be hundreds of megohm. This will also impact switching speed. Perhaps some sort of hiccup switching circuit may make it. Also, I see some similarities with how dynamic RAM implemented.

    For a usual solution, there are some ideal diode like the MAX40203 with 300 nA quiescent current. I suspect that the charge pump of the SM74611 may draw microamps when in ON state - it's unclear from the datasheet.

    All in all, it looks like a puzzle 🙂


  • Hero Member

    If you're able to run in some kind of duty cycled mode, where the control circuitry is only active for brief periods of time, then perhaps the quiescent currents get averaged down to a more manageable level. As a first step, I think I'll just blithely assume the control circuitry can access at least some conventional voltage levels (either saved up from earlier energy harvesting or else gathered in a crude way like in my example above). If I can make good progress doing that, then I can always revisit that assumption at a future date.



  • Found a nice paper on charge pumps design: https://www.mdpi.com/2079-9292/8/5/480.


  • Hero Member

    TPL5100, which draws just 30na, looks promising for duty cycling the control circuitry:
    http://www.ti.com/lit/ds/symlink/tpl5100.pdf
    It has both a PGOOD pin as well as a mosfet driver pin. The edge case would need confirming that it can slowly power up from zero volts to its minimum 1.8v operating voltage with only just over 30na source current without itself drawing more than 30na. Since it has a PGOOD pin, I'd wager that it's unlikely to emit false positive signals while still charging at below 1.8v, because if it did the PGOOD pin would be worthless. 🤔


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Found a nice paper on charge pumps design: https://www.mdpi.com/2079-9292/8/5/480.

    @Mishka I read a similar paper (http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=D650012CC6F5208E02BF41AE55DF0E95?doi=10.1.1.128.4085&rep=rep1&type=pdf) which says that the best charge pumps use static charge transfer switches. That said, I'd be happy if I could build any kind of ultra low energy harvesting charge pump using discrete components as long as the component count is low.


  • Hero Member

    I tried it with a TPL5110 just now, but it gets caught in a boot loop: voltage rises to 1.440v and then suddenly drops to about 1.400v. I think this is because when the TPL5110 starts up for the first time, it draws ~200ua current to read the resistor settings, which it then stores and uses for the time delay.
    So, if there exists a similarly low current timer that can be set without a heavy drain step like that just described, then I'd go for that instead.

    Meanwhile, this is the lowest current (88na) voltage detector that I know of: https://www.torex-usa.com/products/voltage-supervisors/low-power/xc6136/
    That would limit me to light sources something greater than 1 lux (as measured by my lux meter) if I am to harvest anything using the brute force simple approach for a cold start, but once I get enough of a power reserve I could maybe harvest lesser amounts by duty cycling something like an LTC3108.



  • @NeverDie Maybe try to bootstrap it with external voltage source applied parallel to the cell?


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    @NeverDie Maybe try to bootstrap it with external voltage source applied parallel to the cell?

    I'm not sure what that would look like. Do you have anything concrete in mind?



  • @NeverDie So when TPL5110 has passed the boot phase does it work after that?


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    @NeverDie So when TPL5110 has passed the boot phase does it work after that?

    Ah, good question. Then it seems to work just fine. I had it waking once every 10 seconds and weakly flashing an amber LED, all on just 88na of collected solar current. Essentially, the capacitor voltage would drop to just below the forward voltage of the LED during the flash (effectively self terminating the flash duration) and then it would charge back up from there.



  • @NeverDie Oh, nice! It's interesting that the full circle including oscillator consumes so low power. It seems really possible to build a discrete harvesting circuit which can collect enough charge to execute a single duty cycle of an MCU.

    Such, assuming (88-35) nA/s = 53 nC charge it will require less than 5 minutes and 22 µF capacitor in order to shot a single BLE event from an nRF52 MCU. And that's at so ridiculous low light. Quite awesome, I think.

    The only issue is that the timer can't optimize it for faster charge, but a voltage driven latch could.


  • Hero Member

    @Mishka Just FYI, in my experiment I drove the LED directly from the DRV pin (I didn't use a MOSFET), and I didn't bother with setting the DONE pin, since I wasn't using a MCU. That gave a maximum possible flash duration of 50ms once every 10 seconds, but like I said, it self-terminated before the full 50ms was up because the capacitor voltage dropped below the forward voltage of the LED. Using a mosfet and an MCU, as intended, would give a little more control, since the the MCU could issue a DONE signal.

    So, yeah, it really is impressive what can be done with so little light, and it could actually go with even less light and a longer charge time, provided the startup hurdle can be gotten past.

    Unfortunately, the XC6136 doesn't yet seem to be widely available at the the all the different possible voltages that can be detected. Digikey doesn't have any, and mouser has only just 3 different types. Perhaps that will improve in the future.

    So, perhaps this is a case where powering the TPL5110 from a primary cell would be an acceptable "cheat". At just 35na, that primary cell should last a very long time.


  • Hero Member

    I received a 0.02% accurate 500,000 count DMM that should make measuring changes by small voltage and current amounts a bit easier:

    When resolution really does count! - Brymen TBM867 / BM867 Multimeter – 02:52
    — mjlorton

    If you're in the market for such a thing, now is a good time to buy, as prices are lower than I have ever seen before and a number of the models previously available from Extech, Brymen, GreenLee, AmProbe and other labels have been discontinued (permanently, it would seem). The models still in production cost 2-3x as much, as did the discontinued models up until fairly recently.


    Interestingly, in the dead of night the keychain solar cell can nonetheless pull down 1.3v from a window facing a streetlight that's across the street, as measured with the op amp buffer using a DMM. That amount of light is so low that it registers as 0.2 lux on my lux meter. On the other hand, it also measures 0.2 lux even with the lens cover on, so I think it's below my lux meter's ability to measure it, as the 0.2 lux appears to be just an offset that should be calibrated to zero.

    An alternative to the opamp buffer would be to have the solar cell charge a 0.1uF capacitor, which then gets quickly read by an arduino ADC. I haven't wired that up yet, but I expect the results would be about the same.

    Or, you could charge a larger capacitor for a longer period of time and perhaps try to snag it with a peak voltage reading when you first connect to it with your DMM. I haven't tried this. I expect it would work, at least to some degree, if you used a big enough capacitor and charged it for long enough, so it might be worthwhile if you have lots of patience.


    Interestingly, the typical input resistance for an oscilliscope is only 1 MegaOhm. For a typical DMM, it's 10 MegaOhm, and for an atmega328p ADC, it's 100 MegaOhm. Thus, if measuring 5 volts, the Arduino ADC would experience a 50 nanoOhm drain. That's too high for measuring weakly sourced solar voltages under very dim lighting. 10 gigaohm would be preferable, but then it will take some time to charge up an input capacitor for the ADC to read.

    It would be better to leave the input impedance as is but use software to disconnect the input pin when it's not being used. That's certainly possible with an nRF5x, but I'm not aware of that being possible on an Arduino Uno. Is it?

    I could connect/disconnect it with a mosfet or a transistor, but then we're back to supplementing the arduino uno with more hardware again, and the voltage drop across such hardware needs to be adjusted for, since the whole point is to get an accurate voltage measurement.



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Interestingly, in the dead of night the keychain solar cell can nonetheless pull down 1.3v from a window facing a streetlight that's across the street, as measured with the op amp buffer using a DMM. That amount of light is so low that it registers as 0.2 lux on my lux meter.

    It would be interesting to measure voltage when the panel is dead black. Should be possible by wrapping it into paper and then aluminum foil. In theory it should be perfect zero, but connecting wires and the cell itself may work as antenna and hence the opamp may show some bias.

    An alternative to the opamp buffer would be to have the solar cell charge a 0.1uF capacitor, which then gets quickly read by an arduino ADC. I haven't wired that up yet, but I expect the results would be about the same.

    Yeah, the charge capacitor is part of some ADC implementations. But instead of use of comparators it might be possible to measure charge / discharge time and derive current and voltage from that. Also, knowing the charge current it will be easy to derive time to full charge and select proper capacitor.

    It would be better to leave the input impedance as is but use software to disconnect the input pin when it's not being used. That's certainly possible with an nRF5x, but I'm not aware of that being possible on an Arduino Uno. Is it?

    From my understanding, input impedance of most of MCU ADC pins (when disabled) are defined by MOSFETs and hence is subject to implementation and input voltage. But with the charge capacitor large enough it should be not an issue, at least as long as the capacitor wasn't connected to the ADC port during the charge (otherwise the impedance must be gigohms in order to be negligible small). Perhaps a mechanical switch could better solve it for the task. And then MCU can be used to measure time to discharge and do the math.

    Also, I must note that to charge the capacitor with tens of nanoamps, the harvester control circuit must consume something in picoamps 🙂 And this makes me think that, first, there must be a reasonable bottom limit, and, second, a combined RF / solar harvester may be an interesting option to go, especially taking in account they can be connected to the same input.


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    It would be interesting to measure voltage when the panel is dead black. Should be possible by wrapping it into paper and then aluminum foil. In theory it should be perfect zero, but connecting wires and the cell itself may work as antenna and hence the opamp may show some bias.

    OK, I'll try it and let you know.

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Also, I must note that to charge the capacitor with tens of nanoamps, the harvester control circuit must consume something in picoamps

    You're right, there just aren't going to be any control circuits that run on mere pico-amps on a continuous basis, and that sets the limit on how low you can go. It's for that very reason that I'm hoping to find some kind of ultra low current, very low frequency, low voltage self starting circuit that effectively draws almost no current until it starts up. It wouldn't have to start at a precise voltage. Just in a general ballplark. Maybe something like this, except lower voltage than 3v?alt text
    http://www.discovercircuits.com/DJ-Circuits/3na-osc.htm
    Seems like it should be possible, given progress in the components since that circuit was drawn, which is now quite a while ago.

    If so, maybe it could even be used to drive a boost converter, similar to:
    alt text
    and with a high enough voltage, perhaps a voltage multiplier as well:
    alt text
    http://dangerousprototypes.com/blog/2013/07/20/avalanche-pulse-generator-and-some-scope-porn/

    Basically, the circuit needs to remain inert until enough charge builds up and a trigger gets tripped. And, it needs not to bootlooop even though it ramps up using just very little current. A tall order, I know. Not sure if the right kind of circuit exists, but that's what I'm in the hunt for.

    If not a multivibrator, then maybe a ring oscillator. Or, if not that, then a blocking oscillator. And if not that, ...., who knows? There are lots of research papers published where people have been able to do it, but unfortunately a lot of them are IEEE published, and so I don't have access to the details of how it has been done. For sure, a lot of it is instantiated into a CMOS chip, which is beyond my reach anyway, but some of them do seem to use discrete components.

    If you have any suggetions, I'm all ears.


  • Hero Member

    @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    @Mishka said in The Harvester: ultimate power supply for the Raybeacon DK:

    It would be interesting to measure voltage when the panel is dead black. Should be possible by wrapping it into paper and then aluminum foil. In theory it should be perfect zero, but connecting wires and the cell itself may work as antenna and hence the opamp may show some bias.

    OK, I'll try it and let you know.

    @Mishka 8mv was as low as I could take it, but I suspect even then there may have been some slight amount of light getting at it. The room was very dark, but I could make out shapes with night vision, and the backlight on my Fluke 87v was leaking light all over the place, even though I tried to shield it. To really do it properly I'd probably have to set up a wireless link so that I could be in another room to read the voltage. Either that or set up a logger and check it after-the-fact. So, summarizing, I apologize I didn't do a more thorough job, but for being conducted in the middle of a pandemic I did the best that time allows, and besides, 8mv is pretty close to zero, so I hope that answers your question well enough. 🙂 As a cross-check to rule out the possibility of it being an artifact, I'll sometime soon take the measurement in a brief snapshot using an arduino, without the aid of an op-amp, and see how that compares. I'll probably use a load switch to disconnect the arduino so that the solar cell has a chance to charge up a capacitor between readings, and I anticipate that given enough time it will eventually charge up to the open circuit voltage.

    Should I start a separate thread for this, or continue it here? It seems that your project is completed, and although this is all relevant, maybe it would be better to split it off? @Mishka Since you're the OP, what's your preference? Continue as is, or fork your thread and continue in a separate thread? I'm enjoying the collaboration, and hope you feel the same. I'm fine with either choice.


  • Hero Member

    In case anyone is curious, this is the dead-bug setup I used to do the op-amp assisted measurements:
    20200318_221533.jpg

    The op-amp calls for a bypass capacitor to be soldered within one millimeter of the input signal, so I soldered a small surface mount ceramic cap directly to that pin and then ran a wire to it from the GND pin. Not sure how well you can see it, but here's a photo of that:
    20200318_221635.jpg

    The LDO had similar capacitor requirements, and I was able to solder those directly between its pins:
    20200318_224136.jpg

    Maybe because of that, despite all the long wires, noise didn't seem to be a problem. The reason for the deadbug design and the DIP op-amp was to avoid any leakage currents that might happen if it were all mounted properly to a protoboard, as I've read accounts from others who have tried doing that but who ran into leakage problems.

    So, while I admit it looks awfully scruffy, it doesn't matter, because it's purpose built just to help get accurate open circuit voltage measurements (and short-circuit current measurements with a uCurrent Gold, not shown here).


  • Hero Member

    And here is Version 2, which uses an Arduino UNO to and a load switch to measure an E-PEAS solar module that's charging a 100uF capacitor using a solar keychain solar cell. This time I did use a prototype board.
    20200319_014102.jpg
    It's too soon to evaluate, but it seems as though it's off to a good start....

    Edit: nope. I'll have to migrate the Arduino design to dead-bug, because the voltage is only very slowly crawling up. Maybe that's just how it is with this the E-PEAS, or else maybe mounting leakage (the higher the voltage the higher the leakage) is what's causing the drag.

    Edit2: confirmed. These measurements were taken at 1 minute intervals, under varying cloud conditions, and it's clearly not able to hold on to the charge the E-PEAS has accumulated on the 100uF ceramic cap:

    734, raw = 652, volts = 3.267
    735, raw = 689, volts = 3.453
    736, raw = 371, volts = 1.859
    737, raw = 399, volts = 1.999
    738, raw = 445, volts = 2.230
    739, raw = 556, volts = 2.786
    740, raw = 616, volts = 3.087
    741, raw = 671, volts = 3.362
    742, raw = 371, volts = 1.859
    743, raw = 444, volts = 2.225
    744, raw = 510, volts = 2.556
    
    

  • Hero Member

    I punted on the Arduino and hooked up the E-Peas AEM10941 module to the deadbug op-amp for measurement, as the dead-bug op-amp appears to work flawlessly. The results were: the AEM10941 does build up to a voltage of about 4.135v max when under fairly bright lighting, and then all that disappears and it reverts to starting to charge up again from a voltage of about 1.8v, and it cycles over and over like that. Kinda weird, but that unexpected result may explain the above 1 minute interval readings: probably (?) it wasn't current leakage but instead this kind of cycling that explains the measurements.

    Edit: Unfortunately, the AEM10941 breakout board can't seem to rise above 0.352 volts when tested with the same solar cell and same dead-bug op amp assembly under the same 1 flux light source, so I'm afraid I have to label it a FAIL for use in boosting, just by itself, from that particular low light scenario. Given its datasheet, I'm rather disappointed. I did clean the board and my soldered connections pretty thoroughly with IPA, but perhaps there are other leakages inherent in that board, or perhaps the chip itself has limitations that maybe aren't apparent from its datasheet.

    Which raises an interesting question: are some types of PCB's less prone than others when it comes to leakage currents? It might make a difference in what kind I order from a PCB fabhouse if some types are better than others. Anyone know?

    I didn't test whether the AEM10941 might have some other beneficial use if that barrier is somehow passed, or assisted in being passed, but for now I'm moving on to test some other chips and see how they perform under these conditions to see whether they perform any better and without needing help.


    Edit: BQ25504 has no problem charging under the 1 lux light, under the same conditions, even from a starting voltage of zero volts.

    Edit2: Well, not quite. Despite a promising start, the BQ25504 peaked at 0.812v and couldn't seem to pull itself above that. It was able to charge up further than the AEM10941, but it hit a ceiling nonetheless. So this time I gave it some bright light to bring its supercap voltage up to 0.814v, and now the voltage appears to be climbing again, al beit slowly. Assuming it is able to continue on its own from this point forward, then my theory is that internally there is a schmitt trigger which is causing this effect: as the voltage slowly rises, the current drain increases up to a peak and then declines again as the voltage continues to rise. At least that is how TI describes typical schmitt trigger behavior in Figure 1 of TI's application report entitled "Understanding Schmitt Triggers": http://www.ti.com/lit/an/scea046/scea046.pdf
    alt text
    Vertical axis is current and horizontal access is voltage.
    So, if that peak current drain is greater than the current generated by the solar cell at the 1 lux light level, it simply can't push past it to the other side.

    Both chips seem rather pathetic if, as seems to be the case, a solar cell alone and without assistance can charge up a capacitor to its open circuit voltage of somewhere around 2.7v but they can't. To be fair, there could be other factors in play, though, like the PCB material type, the dialectric the manufacturer used to impregnate the FR4 to make the PCB, how much humidity had gotten into the FR4 (resulting in extra leakages), component choices as well as layout. That was my earlier hunch, but that hunch may get upended and replaced with the schmitt trigger theory if the BQ25504 continues its upward charge. We shall soon see.

    Meanwhile, somewhere I have laying around a BQ25570 on a chinese breakout board, and it might (?) possibly avoid this problem that the other two seem to share....

    Edit3: Nope. The BQ25504 simply got stuck again, this time at 0.851v. According to the datasheet, it's still in cold-start mode until the voltage on VSTOR reaches at least 1.6v (or possibly higher), and that matches what I recall about the BQ25504 from earlier experimentation with it: it performs pretty terribly while in cold-start mode.

    Punt!

    Unfortunately, BQ25570 also remains in cold start mode up to the same 1.6v+ as the BQ25504, so I'm losing optimism that it might be any better... And like the BQ25504, the BQ25570 also requires typically 15uw to get its mojo on, and at 88na of current that just isn't going to happen.
    So, there's no rush to test the BQ25570. If the datasheet is right, it's almost certainly another FAIL. 😞 Judging from the datasheet, the BQ25570 is largely just the BQ25504 mashed together with a buck converter. And the BQ25505 looks about the same as the BQ25504, except with a little bit less quiescent current.

    What a disappointment! I would have thought that TI had the in-house talent to do a lot better than this.


  • Hero Member

    Well, doing a little back of the envelope calculations: if a silver zinc 8mah SR416 primary battery, which is just 4.8mm in diameter and 1.6mm thick, were used to continuously drive a 35na TLV5110 timer, then assuming all 8mah could be extracted and ignoring self discharge, it would last for 26 years. Then consider that a properly designed energy harvesting circuit could relieve the battery from needing to run whenever there is adequate harvested energy available, and the expected lifespan of the system would probably be even longer.

    The only purpose of the timer would be to pulse accumulated energy into an off-the-shelf energy harvester, probably none of which can handle extreme low energy accumulation. One maybe can't know what the optimal duty cycle should be, but one could make educated guesses, and perhaps a more refined circuit could even self adapt to some degree.

    Anyhow, I'd rather not go that route, but as an exploratory tool, it would be fun to make these harvesters work in "scotopic" darkness and yet still accomplish something useful with whatever energy they can somehow squeeze out of it, all while remaining tiny. 😎



  • Hi @NeverDie, thanks a lot for doing the experiments!

    Basically, the circuit needs to remain inert until enough charge builds up and a trigger gets tripped. And, it needs not to bootlooop even though it ramps up using just very little current. A tall order, I know. Not sure if the right kind of circuit exists, but that's what I'm in the hunt for.

    Yeah, this is would be very interesting to achieve indeed. Looks like the water bucket from aquapark. Unfortunately, have no practical ideas at the moment. Maybe a FET + BJT combo where the FET generates spike of the current which activates the BJT which then drains the input capacitor? The idea here is to utilize the inrush current from the FET before it will be stabilized. A comparator may have higher quiescent current, or may not.

    8mv was as low as I could take it, but I suspect even then there may have been some slight amount of light getting at it. The room was very dark...

    8 mv is fair enough. So it seems all about the structure of the amorphous cell. Interesting!

    Should I start a separate thread for this, or continue it here? It seems that your project is completed, and although this is all relevant, maybe it would be better to split it off? @Mishka Since you're the OP, what's your preference? Continue as is, or fork your thread and continue in a separate thread? I'm enjoying the collaboration, and hope you feel the same. I'm fine with either choice.

    Although the discussion went beyond the original project, the topic is very interesting. While most of existing harvesters are aimed at low-voltage sources, it seems that we're trying to address the unique property of a-Si cells to have high-voltage bias in the extremely low light. This is not only enjoying, but might also have (and I hope will do) some practical extension. Of course, if there is a better place for the discussion - it's completely okay to move it, I'll be glad to follow-up there.

    Regarding the project, it wasn't finished yet. I'm currently waiting for newest PCBs - they're still based on SPV1050, fully configurable, the components selection is for the boost. Appropriate solar panels are also on the way.

    BTW, I had a chance to try the SPV1050 (buck) and nRF52833 with a single one SolarBit I have, no battery attached. In the direct sunlight it works without any issue, even with 1 mA red LED blinking 50% of time. This is definitely not the best setup, so the mentioned PCBs and panels should make it more useful and especially for a cloudy day. Also, for the version 2.0 I'm considering to replace the harvester IC with the AEM1094. I also have somewhat different idea about form-factor, but that's for another topic.

    And here is Version 2, which uses an Arduino UNO

    Perhaps the right thing would be to charge the capacitor first, and only after that connect it to the Arduino. The Arduino has to read the ADC often so it should be possible to determine highest voltage before it decays.

    Unfortunately, the AEM10941 breakout board can't seem to rise above 0.352 volts when tested with the same solar cell and same dead-bug op amp assembly under the same 1 flux light source, so I'm afraid I have to label it a FAIL for use in boosting, just by itself, from that particular low light scenario.
    ...
    Despite a promising start, the BQ25504 peaked at 0.812v and couldn't seem to pull itself above that.

    From my (perhaps not too careful) review I did earlier in this thread the AEM10941 requires 3 µW input, and the BQ25504 requires 15 µW. Either of those are far beyond the 3V*80nA condition.

    Unfortunately, by most of manufacturers a nanoamp source seem usually considered as zero current.

    if a silver zinc 8mah SR416 primary battery, which is just 4.8mm in diameter and 1.6mm thick, were used to continuously drive a 35na TLV5110 timer, then assuming all 8mah could be extracted and ignoring self discharge, it would last for 26 years.

    Hmm... taking in account those 80 nA collected in 10 seconds will be wasted in one millisecond, and then the next 9.999+10 seconds it will wait for another portion, it sounds like bargaining 35 nA for 40 nA. Well, fair enough! 🤠


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Hmm... taking in account those 80 nA collected in 10 seconds will be wasted in one millisecond, and then the next 9.999+10 seconds it will wait for another portion, it sounds like bargaining 35 nA for 40 nA. Well, fair enough!

    TI makes a range of different TLP5xxx chips, and Adafruit makes convenient breakout boards for at least two of the different models. I even used one in an earlier leak detection project: https://www.openhardware.io/view/534/Extremely-Simple-Arduino-Pro-Mini-LoRa-Water-Leak-Detector

    What I haven't yet tested (and haven't read nor heard) is whether ia TPL5xxx can self excite and start-up normally if powered from the very slowly rising voltage created by a tiny solar cell in weak lighting.


  • Hero Member

    I stumbled across this: http://www.prc68.com/I/JouleThief.shtml
    which is a fascinating goldmine of information about blocking oscillators and their use in just about every cheap solar circuit you've ever seen or heard of, including some that maybe you haven't. Be that as it may, for tiny panels in ultra low light (1 lux and below), I'm pretty sure they'll need to be spoon fed, just like these commercial chips we've been examining.

    As for a proper DIY trigger circuit, about 5 years ago David Pilling made some very interesting posts regarding the use of PUTs (programmable unijunction transistors): https://www.davidpilling.com/wiki/index.php/PUT
    and on his wiki he built some solar harvesters around that. What I really like and appreciate about his work is that he published ltspice models of his circuits, so it's very easy to download them and run the simulations. Earlier today I emailed David Pilling to see if he'd like to join the discussion here. A lot of technological progress in ultra low power has happened over the last 5 years, and so I think maybe he would be interested and perhaps he'd want to upgrade his circuitry to take advantage of the much lower-voltage/lower-energy components commonly available now that simply didn't exist back then.

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Hmm... taking in account those 80 nA collected in 10 seconds will be wasted in one millisecond, and then the next 9.999+10 seconds it will wait for another portion, it sounds like bargaining 35 nA for 40 nA. Well, fair enough!

    What I forgot to mention in the post directly above was that the tlp5xxx chips can be resistor programmed for much longer cycles than 10 seonds. e.g. the TLP5110 can be set anywhere from 100ms delay all the way up to a 2 hour delay. So, that's a very pliable range for collecting tiny amounts of solar on a cap, which can then be fed into a harvester as a unified kick. The 10 seconds you're referring to just an arbitrary number that I had picked and which just happened to work in the earlier circuit. The time delay could be set much less or much greater than 10 seconds. It's whatever you choose.

    I think I'll try a tpl5xxxx timed collector and then pipe the accumulated current into the LTC3508 circuit through an ultra low leakage load switch. Since the LTC3801 needs only 20mv, it should be easy to collect at least that voltage level, even in very dark conditions, using the solar keychain solar cell (amorphous silicon): https://www.openhardware.io/view/732/Extreme-Energy-Harvester So, while the hunt is on for something better and more elegant as a trigger than the crudity of just how much time has passed, this is a brute force approach whose virtue is that it's pretty much guaranteed to work provided that leakage currents are tightly controlled to extremely low levels Fortunately, because of ohm's law, ultra low voltage is likely to make ultra low leakage easier to achieve during the accumulation phase. 😁 What will be interesting is: 1. how big a cap is needed and 2. how long the cycle time needs to be, because boosting extremely low voltages still needs to meet the minimal power requirements (i.e. a lot of current). Unfortunately, nowhere that I can find in the LTC3108 datasheet does it specify the minimum input power to operate. Just the 20mv minimum voltage. Therefore, I'm guessing the minimum power is probably rather high, since companies often hide their bad news by simply not reporting it in the datasheet. Anyhow, I'll just have to derive the minimum power as best I can through experimentation. 🙄

    The main downside to the TPL5xxx is that it reads the resistor values exactly once during the startup phase, and then never again. Although that has the benefit of limiting forever after the amount of current the TPL5xxx needs to operate, it also means that you can't easily change the periodicity anytime after the TPL5xxx starts up: even if you change the resistors after it gets going, it never reads them again. Thinking ahead, it might (?) be possible to hack around that limitation by changing the resistor values and then power cycling the TPL5xxx so that it reads the new values and incorporates them. The tradeoff for that result though is the extra circuitry needed to accomplish that. It would be much easier if (?) one of the TPL5xxx variants had a reset pin, so perhaps I'll look soon into whether or not any of them have that feature....


  • Hero Member

    I put David Johnson's 3na oscillator circuit:
    http://www.discovercircuits.com/DJ-Circuits/3na-osc.htm
    into LTSpice and ran the simulation, and it looks promising:
    simulation1.png

    It also runs just fine at 2v. Fairly easy to get a shorter or longer cycle by tweaking the resistor values and/or capacitor values.

    The voltage swing is even better than I was expecting: it drops all the way down to around 30 or 40mv. 😋

    Of course, it would be nice if it could run at even lower voltages than 2v. Seems like that should be possible. Anyone have suggestions for which transistors to try for that?

    The simulation shows that there's a very nice current pulse of about 4.2ma through Q2 during the very brief discharge phase, so I'm guessing that could drive a buffer transistor to turn on hard, which in turn could, in theory, drive a meaningful load without disturbing the underlying timer circuit. 😎 If that's the architecture, though, there may need to be a separate, isolated capacitor to drive the load that charges up in parallel with the capacitors in this oscillator circuit--unless perhaps there's some way to recycle/reuse the current that gets dumped and otherwise wasted during each discharge.

    Or, quite possibly, it could be used to drive a flyback type circuit, in which case I possibly wouldn't need a commercial boost chip at all and could instead do all the boosting with a homemade DIY circuit made out of discrete components. 😍 That's the promise of what this type of low-level control could grant.

    Edit: I posted the LTSpice circuit simulation file for David Johnson's 3 nano-ampere circuit here:
    https://github.com/rabbithat/3nanoAmpOscillator

    Edit2: I anticipate a potential problem though: the 3na oscillator has very high input impedance. PV cells are modeled as having a shunt resistance, and unless that shunt resistance is exceptionally high, then most of the generated solar cell current won't be entering into the oscillator but will instead be lost as wasted current through the shunt resistor. I'm hoping that doesn't preclude the oscillator from working, but it might if that reduced current translates into reduced voltage at the inputs to the oscillator. The best case scenario would be that the oscillator simply has a much longer cycle time with the PV cell as compared to a battery. In any case, shunt resistance doesn't seem especially easy to measure, so one strategy would be to just build the circuit and see how it works with the target PV cell rather than fuss too much over constructing an accurate equivalent circuit to plug into the simulator.

    Edit3: Good news. Using the method published in IEEE to calculate PV shunt resistance (https://ieeexplore.ieee.org/document/1483817), I calculate the shunt resistance on the keychain solar cell to be 30,681,818 ohms. So, more than likely the oscillator will work when hooked up to it. This also finally explains why these solar cells perform so well at even ultra low lighting conditions.

    This thread seems to have petered out, so I guess that's the end of it. It was nice while it lasted. 🙂



  • Dear @NeverDie, you've done tremendous amount of work! The topic is extremely interesting, but I admit I can't keep up the pace, especially when discussion dived so deep and requires fair amount of research and simulation. Let's just keep it floating and open for everyone (I really hope David might kick it up). I personally try to follow up your recent posts a bit later, sorry 😞

    P.S. Asked a colleague about it and he's like: "Nano... what?!" 🙂


  • Hero Member

    @Mishka I recently had some convivial email exchanges with David Pilling after I reached out to him. He seemed interested in this thread, or maybe he was just being polite. Regarding his previous efforts, he mentioned that he was eventually able to run his PUT oscillator at 200 nanoamps.


  • Hero Member

    @Mishka I've got good news, and I've got bad news. The bad news is that according to the LTSpice circuit simulator, the Dave Johnson circuit, as given, is nowhere near 3na of power consumption. It's much higher than that. Here's what it shows as the current passing through the R10 resistor in the figure below:
    Johnson_current.png

    The good news is that by increasing the resistance and capacitance, I've confirmed it's possible to run the oscillator at 1 lux on the keychain solar cell:
    P1020037 (2).JPG
    If measured at the output pin of transistor Q2, it produces a 2 volt pulse every couple of seconds:
    2volt_1LuxOscillation.png
    I'm pretty confident it will run at even lower lux, al beit producing a lower voltage, but I'm not yet setup to test at less than 1 lux yet.
    Here is an approximation of the modified circuit and its current consumption:
    solar_works_v000.png
    As you can see, both the average and the instantaneous current consumption are less than for TI's TLV5110 chip.

    And yes, I've confirmed through testing that it can self-start at 1 lux even if it had been pitch black prior! In that case it starts a pulse train at lower magnitude but higher frequency and gradually works it's way up to the 2 volt magnitude at the 0.5 Hz frequency, which at 1 lux is where it settles.

    😄 😄 😄 😄 😄



  • @NeverDie Oh, nice! You may eventually turn it out into a PWM/PFM charger.


  • Hero Member

    @Mishka The circuit is more stable and consistent than the 3v simulation would suggest. I'm now totally sold on the value of simulation, but it's a bit problematic when a solar cell/panel is involved because for an accurate simulation you need to find an accurate "equivalent circuit" to use in place of the cell/panel, and for accuracy that means a 5 element circuit: two diode, shunt resistor, series resistor, and a current source. However, figuring out the correct values for those parts requires a lot of measurements to get the desired accuracy and is a project in itself.

    That said, I'm optimistic that there are some less mainstream transistors that will allow the circuit to run at lower voltage.


  • Hero Member

    Here's a courtesy heads-up.

    I just now stumbled across a circuit:
    alt text
    published here:
    https://www.edn.com/solar-powered-motor-runs-on-10-na/
    that allegedly can operate on as little as 10na while collecting energy, which it then uses to power a small pager motor once a threshold voltage is reached.

    It also has the virtue of utilizing inexpensive jelly bean parts and not relying on gigaohm resistors, which in the Dave Johnson circuit turned out to be so large that I lack the means to verify their specs through measurement after they are delivered.

    This other guy instantiated the circuit as a PCB, and he made the gerber for it available as a free download: https://hackaday.io/project/159691-electron-bucket-extreme-power-management-module

    If it turns out to be true that the circuit can both collect the current and trigger at a threshhold voltage all with just 10na of overhead, then on its face it sounds better than the David Johnson circuit turned out to be and possibly also better than many/most/(all?) of the commercial chips that we've reviewed on this thread if paired with an appropriate amorphous solar panel.

    Edit:
    But wait! There's more. There appears to exist an equivalent single chip voltage detector that also consumes a mere 10na of current: https://www.akm.com/content/dam/documents/products/power-management/power-ic-for-energy-harvesting/ap4405aen/ap4405aen-en-datasheet.pdf
    It's itty bitty, so it's probably a great fit for your uber-compact design.

    "But I want more!" I can hear you say. "I want a total step-up solution! And I want one that doesn't use a transformer!" Well, of course you do. Who wouldn't? Apparently, a 0.2v transformerless step-up solution does exist as well. I'm just not sure where. They developed it for a customer who wanted to harvest energy from... bacteria. Actually, the official term is "microbial fuel cell." The chip is the AP4470, and thankfully it can also be powered by solar, without bacteria.
    https://solutions.akm.com/us/en/applications/energy-harvesting/
    But can we buy it? Or is it just another inaccessible research project? I don't yet know. Can you read Japanese? The trail of bread crumbs written in English seems to run cold after the above link, but there's more about it that's written in Japanese. Argh.



  • @NeverDie This. Is. Stunning!!!

    I must admit that I were stuck with a CMOS driven circuit, but there are BJT circuits with amazing level of practicality. The decision to employ a LED is simply brilliant. I don't know shall we put it into a SPICE, perhaps to facilitate selection of real components, but taking in account the Hackaday project it should simply fall into place. Going to examine the project. It's definitely worth implementing it, thank you very much for finding the project!

    The AP4470 looks very interesting too. With reported 7µA current consumption when boosting starting from 0.2V, and fixed high to low output voltage from 2.6V to 3.55V, it looks like a strong competitor to the AEM10941. I'd still stick to the latter though, not only because of availability (including documentation), but the e-peas product also has very appealing buck-boost configuration.

    I'm also thinking about even more modular design of the boards (details will follow later), so having two harvesting circuits targeting different scenarios is the right way to go.

    Thanks again for your interest!


  • Hero Member

    Here's another one: https://patents.google.com/patent/US20170133938
    He claims the startup power is just 100nW. For contrast, TI says their BQ255xx chip requires 15 uW. i.e. an entire order of magnitude more. Sounds too good to be true, doesn't it? Which leads me to wonder: just how well are patents vetted before they're granted? Might it still be granted even if the author never made a a circuit that performed anywhere near as well as the patent claims? Is anyone even checking?

    By the way, on a different topic, this might interest you: https://www.mouser.com/ProductDetail/426-DFR0579 It's a $12.90, 30mmx30mm, fully assembled breakout for the SPV1050, configured as a boost converter.



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Here's another one: https://patents.google.com/patent/US20170133938
    He claims the startup power is just 100nW. For contrast, TI says their BQ255xx chip requires 15 uW. i.e. an entire order of magnitude more. Sounds too good to be true, doesn't it?

    What's interesting about the circuit is that it uses the self-resonant converter together with a MOSFET (HEMT is recommended) which is closed at low voltage. There, the 1:1 transformer is used to bump the gate voltage and thus fully open the MOSFET when it reaches the threshold value Vth (the paper notices it at 120 mV, but for the a-Si cell it might be at 2.6V). The more it opened - the more voltage at the gate. This results in discharge of the input capacitor to the load until the gate capacitor voltage + the second inductor voltage won't drop below Vth. The input capacitor cut-off voltage could be configured to 1.8V so it will charge faster on the next cycle.

    The patent mentions 0.1V x 1µA = 1nW startup power. Upon charge of the input capacitor, the leakage current will be at about tens on nanoamps. Perhaps rest of the harvester circuit consumes something too. Obviously, when it's going to discharge the inductors will cut some efficiency, but it's worth it anyway.

    Looks interesting!

    Which leads me to wonder: just how well are patents vetted before they're granted? Might it still be granted even if the author never made a a circuit that performed anywhere near as well as the patent claims? Is anyone even checking?

    Well, a patent is just an exclusive right to the invention, and AFAIK there is no practical consideration neither verification of the patent subject. All that's checked is the invention wasn't patented before.

    By the way, on a different topic, this might interest you: https://www.mouser.com/ProductDetail/426-DFR0579 It's a $12.90, 30mmx30mm, fully assembled breakout for the SPV1050, configured as a boost converter.

    Yeah, it's nice! Thanks for the link! I think we here will be able to offer something interesting too: both boost & buck-boost combo board with USB and LDO, 25 mm diameter. Now in trendy corona-shaped profile from the OSHPark 🙂

    coronaboards-small.jpeg

    Unfortunately, can't assemble them due to the quarantine 😞


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    (HEMT is recommended

    Wait. He reccommended a PHEMT for part 315 and an E-PHEMT for part 445:

    The self-starting oscillator 445 utilizes a transistor. In one embodiment, the transistor is an E-PHEMT (Enhancement Mode Pseudomorphic High Electron Mobility Transistor) transistor, as the switching device to form a resonant step-up oscillator using a coupled inductor (the left and right inductors, ratio 1:1, 1 mH) and a resistor and capacitor in parallel at transistor's gate. The self-starting oscillator 445 is in series with the inductors. The transistor is normally off at zero gate voltage which would be the case with the two solar cells in complete darkness. The transistor's threshold voltage is very low and has a value greater than 110 millivolts.

    [0065]

    The E-PHEMT transistor 445 can be described as having the combined characteristics of a FET (Field Effect Transistor) and BJT (Bipolar Junction Transistor) and is used primarily for high-speed RF amplifiers in cell phones or other communication gear, but it is also an excellent candidate for low voltage self-starting oscillators like the oscillator 445.

    alt text
    I'm confused. Aren't 315 and 445 simply different aliases for the same physical component? 315 at a higher abstraction layer and 445 at the detailed layer? Except... isn't an E-PHEMT different from a PHEMT? So, they aren't aliases for the same part after all? Or, maybe they are the same, but 315 refers to a different potential embodiment than 445? Or... do HEMT, PHEMT, and E-PHEMT all mean the same thing?

    By the way, I mispoke in my earlier post. 100nW is actually two orders of magnitude lower than TI's 15uW cold start minimum for TI's flagship energy harvester. If the patented circuit now under discussion here really does perform as well as it claims, then that makes it all the more impressive.

    If it needs 100nw of continuous power, then it's of little use to me. If, instead, it can draw the needed power from harvested energy stored on a capacitor--and then collapse after the cap power runs out--then, cool! That I could use.

    If only there were a proper LTSpice simulation of the circuit already available....

    Unfortunately, can't assemble them due to the quarantine 😞

    You mean their automated assembly is off-line, or that you can't source all the parts you need due to the quarantine, and so you can't DIY the soldering even if you wanted to?

    BTW, I like your PCB homage to the caronavirus. Subtle, yet amusing!



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    I'm confused. Aren't 315 and 445 simply different aliases for the same physical component? 315 at a higher abstraction layer and 445 at the detailed layer? Except... isn't an E-PHEMT different from a PHEMT? So, they aren't aliases for the same part after all? Or, maybe they are the same, but 315 refers to a different potential embodiment than 445? Or... do HEMT, PHEMT, and E-PHEMT all mean the same thing?

    I see the components are numbered through all the figures in the form XYY where X is the figure number, and YY is the component number. Such, 115, 315, and 415 are referring to the energy harvesting circuit. The circuit contains x20 resonant DC-DC converter, and x45 do reference the transistor or crystal oscillator.

    An enhancement mode transistor (N-channel MOSFET or an E-HEMT) is required because it has to be closed at zero bias.

    By the way, I mispoke in my earlier post. 100nW is actually two orders of magnitude lower than TI's 15uW cold start minimum for TI's flagship energy harvester. If the patented circuit now under discussion here really does perform as well as it claims, then that makes it all the more impressive.

    Oh, my, it's 100 times different, rght. I'm still not used to the numbers and feel that if we take a couple more steps, we will go to the quantum level 😆
    🕳 🚶

    Unfortunately, can't assemble them due to the quarantine 😞

    You mean their automated assembly is off-line, or that you can't source all the parts you need due to the quarantine, and so you can't DIY the soldering even if you wanted to?

    Just can't get to the soldering station, it's closed in the office with some other components until May.

    BTW, I like your PCB homage to the caronavirus. Subtle, yet amusing!

    All credits go to OSHPark which didn't bother to remove the panel tabs 😄


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    I'm still not used to the numbers and feel that if we take a couple more steps, we will go to the quantum level

    LOL. In that case, strap yourself in Dorothy, because Kansas is about to go bye-bye: here's a voltage detector which claims to have a quiescent current of less than 6 pico-amps!
    ! https://www.bristol.ac.uk/media-library/sites/engineering/research/eem-group/zero-standby/UB20M_Datasheet_Rev.1.5.pdf
    The only thing which appears to tarnish that claim is that it has a leakage current of 100 pico-amps. Even so, though, I'm not aware of anything else that even comes close to that. If it does what it claims to do, then I'm imagining we could harvest energy from even a very dark environment and yet still be net positive on harvested energy (without the control hardware consuming all of it and then some). 🙂

    Unfortunately, their UB20X chip doesn't seem to be stocked anywhere. I sent an email to the company yesterday to inquire about how to buy it, but so far I haven't heard anything back yet. I hope they're still in business.



  • @NeverDie Well 🙂

    What can I say? Only that the PDF is here. They seem achieved this ridiculous leakage with careful transistor selection. Very nice!


  • Hero Member

    @Mishka Thank you very much for that link. Gosh, it sure would have been awesome to have such an ultra low power wake-on radio such as that described there. Unfortunately, I'm still getting no reply to even my second email attempt at contacting the company. Maybe they'll reply later, but for now I'm going to assume they are closed for business during the Caronavirus attack.

    Fortunately, Figure 5 in the paper you linked shows an equivalent transistor layout for the voltage detector. It lacks a BOM with part numbers, but I'll nonetheless take a quick run at trying to simulate it in LTSpice--maybe I'll get lucky. If you were in my shoes, exactly which simulated transistors/mosfets would you be trying?

    As for alternatives to the UB20M, the nearest I could find is this:
    https://www.ablic.com/en/doc/datasheet/photo_ic/S5470_E.pdf
    which, admittedly, isn't as nice because it is an ultra low current detector rather than a low voltage detector. Its quiescent current is higher than the UB20m, but it appears to be still quite low in absolute terms. What the S5470 does have that the UB20M lacks though is that the s5470 is well stocked at Digikey and similar places. 🙂

    Have you run across any other parts that might fit the UB20M role?

    Edit: I put Figure 5 into LTSpice. I could get it to generate the ~100mv reference voltage, but it doesn't appear to switch anything nor "detect" and then switch anything either. So, maybe there is more to the circuit that what they are showing. Given the circumstances of not being able to acquire their UB20M, it's a bit of a let down. 😞


  • Hero Member

    The last option I can think of would be to try these special mosfets from Advanced Linear Devices:
    https://www.aldinc.com/pdf/ALD110802.pdf
    The gate leakage and drain source leakage combined is typically just 13pa. They can switch at around 0.2v, which, I suppose (?), could be viewed as a kind of voltage detector. Maybe in that sense, then, it even outperforms Bristol's UB20M? Also, unlike the UB20M, they seem to be relatively available through digikey, mouser, etc.



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Fortunately, Figure 5 in the paper you linked shows an equivalent transistor layout for the voltage detector. It lacks a BOM with part numbers, but I'll nonetheless take a quick run at trying to simulate it in LTSpice--maybe I'll get lucky. If you were in my shoes, exactly which simulated transistors/mosfets would you be trying?

    That's true. The components selection is the hard part. I din't find anything, but the MOSFET arrays by ALD, and I see you've found them already.

    It seems the most of discrete elements are tied to nanoamps and only few are diving to picoamps area. For example, the Nexperia settled it to 25 nA, as well as the TI does. But for some selected integrated circuits there are the picoamps, and some opamps may draw only femtoamps which is impressive. There is also the nice article on possible design issues - quite surprising - when building such a uber-low-power circuit - https://www.edn.com/design-femtoampere-circuits-with-low-leakage-part-one/

    As for alternatives to the UB20M, the nearest I could find is this:
    https://www.ablic.com/en/doc/datasheet/photo_ic/S5470_E.pdf
    ...
    The last option I can think of would be to try these special mosfets from Advanced Linear Devices:
    https://www.aldinc.com/pdf/ALD110802.pdf

    Yeah, that's it. And the cool part is that the ALD offers 2V*200nA=400nW energy harvesters which work very similar to those we're trying to design here - http://www.aldinc.com/pdf/EH300.pdf

    Unfortunately, still not sufficient to run your a-Si 80nA solar panel.

    Edit: I put Figure 5 into LTSpice. I could get it to generate the ~100mv reference voltage, but it doesn't appear to switch anything nor "detect" and then switch anything either. So, maybe there is more to the circuit that what they are showing. Given the circumstances of not being able to acquire their UB20M, it's a bit of a let down. 😞

    It has to switch the VOUT on as soon as the VINL will be high enough to close the MN5 and pull down the VREF thus resetting the triggers and causing them to produce the VOUT.

    I've put it into KiCad and immediately failed with component selection. In addition to issues with the search of a low-current MOSFETs, the ngspice has incomplete support for the modern PSPICE models. And create own models is a cumbersome task 😞

    After trial and errors I've ended up switching to ngspice internal models. After some trivial tuning the circuit started to work. I've just added input (storage) capacitor and have attached a simple load (switched with an additional N-MOS) to get the simple harvester work.

    On VinL≥2V input capacitor is discharged to load R2 until VinL will drop below 1V. Both voltages are configured via MOSFET gate thresholds.

    For details please take a look to the eeschema file - https://drive.google.com/file/d/1O8aVj7ZzjG1TNdTJOce4i2P65X-aRLgB/view?usp=sharing.

    Voltages:

    voltages.png

    Input current I (via R1) in dependency of input voltage. I(R1) = 3V/100M = 33nA to simulate the a-Si cell.

    current.png

    I don't know how much current the circuit will draw in real life, but taking in account low voltage source (please note, datasheets mention 25nA as upper threshold) perhaps there are some chances to fit into the a-Si cell current budged.



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Have you run across any other parts that might fit the UB20M role?

    The UB20M is hard to beat. But there's another sub-nanoamp option: https://www.vishay.com/docs/66597/sip32431.pdf


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Have you run across any other parts that might fit the UB20M role?

    ...But there's another sub-nanoamp option: https://www.vishay.com/docs/66597/sip32431.pdf

    How would the vishay fit into it? Are you thinking you would switch it on-off using an ALD mosfet, or ...?


  • Hero Member

    @Mishka Nice work getting it to switch. If I'm reading your graphs right, though, it look as though we're back to the land of 10+ nanoamps as opposed to the ~106 picoamps or so of the UB20M voltage detector, even though you're using the same transistor circuit as they are?



  • @NeverDie I've finally managed to make a readable image of the circuit. For our convenience, here it is:

    ub20m-harvester.png

    The circuit self consumption is comprised of MOSFETs leakage current, and current required to charge the C1 capacitor. Regarding C1 the startup current may be arbitrary low, but sufficient to charge it eventually. After that it won't require too much to sustain the circuit. For this particular ngspce model (where MOSFETs leakage is really low) those are picoamps indeed:

    e31aa887-739d-46bb-bb10-fcfb90080a03-image.png

    Those 30nA you've mentioned in my previous post are due to charging the C2 storage capacitor and is actually limited by R1=100MOhm resistor installed solely to emulate the weak a-Si panel. I.e. for one gigohm resistor it will not go higher than 3nA.

    Of course, the model itself is far from being optimal and could be improved.



  • @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    @NeverDie said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Have you run across any other parts that might fit the UB20M role?

    ...But there's another sub-nanoamp option: https://www.vishay.com/docs/66597/sip32431.pdf

    How would the vishay fit into it? Are you thinking you would switch it on-off using an ALD mosfet, or ...?

    I have no idea. Bipolar based opamps have similar characteristics, as well as the UB20M which seems build using FETs only.
    🤷‍♂️


  • Hero Member

    @Mishka Fantastic!

    alt text

    I tried replicating it in LTSpice, but no joy as of yet using just the generic LTSpice parts. The magic must be in those ".model" statements, which I haven't yet entered.

    What value are you using for your input voltage? It seems that a lot of it is getting dropped across the 100meg resistor, leaving not much left over for most of the circuit.


  • Hero Member

    @Mishka First attempt with the ltspice directives yields just a flatline of about 1 volt at the output:
    SIM2.png

    Perhaps I need to switch to the same spice as what you are using....



  • @NeverDie Oh, right. For the voltage source there is the 3V pulse defined as follows:

    PULSE (0 3 20m 1u 1u 60 0)

    Reads like "start pulse from 0V to 3V, after 20ms timeout, 1us raise time, 1us down, keep it on for 60 seconds". This helped to examine how the circuit starts. But the circuit has to start with flat 3V input anyway.

    All MOSFETs are defined with MOS level 3 model, zero-bias threshold (vto) set to ±2 V, transconductance (kp) to 50 mA/V^2 to minimally reproduce a real transistor. Both drain and source has 1 Ohm resistance. Please note, the controlled NFET has lower voltage threshold at 1 V - this defines lowest VinL voltage. The rest of parameters can be derived from the ngspice manual, section 11.2.

    I expect that the ngspice and the LTSPICE may have different directives to setup the circuit 😞

    Also, you may want to drop the C3, M8 and R2 thus leaving the circuit very similar to that one in the paper. The R1 still be used to limit input current, and the C2 will help to model raising voltage.

    Also, does the .tran 10k means 10k milliseconds?


  • Hero Member

    @Mishka said in 💬 The Harvester: ultimate power supply for the Raybeacon DK:

    Also, does the .tran 10k means 10k milliseconds?

    Actually 10,000 seconds. 😲 That was just me throwing in a high enough number such that if there were ever to be observed an effect, I figure it would have shown up within 10,000 seconds. 😊

    I was playing around with an alternative to the original model, the better to understand how the original model worked, and I came up with something not as great, but maybe (someday, somewhere) it might be useful anyway if used as a trigger for one of the the ALD 20mv mosfets:
    22mv_detector.png
    This is a voltage sweep simulation to show what happens at different input voltages. As you can see from the chart, the voltage on the output (the green line) stays pretty close to 0v up until it reaches around 22mv, at which point it it jumps up about 22mv in value. At that time about 6na of current is being conducted through R1 (the blue line in the graph), and so that is the total amount of current being consumed by the circuit.

    20mv is the minimum that the LTC3108 can startup and function at, so that is why I'm focused at such a low value.

    It's quite an easily adjustable voltage "detector": using smaller values for R2 leads to higher trigger voltages, as well as higher voltages on the output. Of course, they also lead to higher currents, so maybe not so relevant to the matter at hand. However, if you ever need a voltage trigger that you can set to any value in some other context where current draw is not such a pressing concern, this might be an option.

    Also, about 2/3 the current is being consumed by R2. If there were some other way to get a similar effect, but utilizing even less current, then that would be an improvement. Perhaps that's what the Bristol circuit manages to do. Perhaps choking off the current by using a high value for R1 (as in Mishka's simulation) and using a semiconductor of some kind in place of R2 would do the business.

    Edit: And just now noticing that by increasing the value of R1, the threshold for the detection voltage can be raised while keeping the current consumed in the single nanoamp digits:

    higher_threshhold.png

    In this case, with the higher threshhold, it might well be a useful complement to a 20mv ALD mosfet.

    Edit2: Breaking out the resistance still further yields even more useful results: a larger transition voltage and even fewer nanoamperes.
    better.png
    These are just a few random attempts. A more methodical push would probably yield something better. I suppose trying it next with specific simulated components rather than whatever the simulator's generic components are would better inform whether a real world circuit could be built.



Suggested Topics

0
Online

11.2k
Users

11.1k
Topics

112.5k
Posts