Slim Node Si7021 sensor example





  • Ok, so I messed up my previous sensor trying to solder the bridge (don't ask...) I have now (I think) soldered it and reconnected it, am now getting the following:

    Serial started
    Voltage: 3359 mV
    send: 132-132-0-0 s=255,c=3,t=15,pt=2,l=2,sg=0,st=fail:0
    send: 132-132-0-0 s=255,c=0,t=17,pt=0,l=5,sg=0,st=fail:1.5.4
    send: 132-132-0-0 s=255,c=3,t=6,pt=1,l=1,sg=0,st=fail:0
    sensor started, id=132, parent=0, distance=1
    send: 132-132-0-0 s=255,c=3,t=11,pt=0,l=15,sg=0,st=fail:EgTmpHumBat5min
    send: 132-132-0-0 s=255,c=3,t=12,pt=0,l=10,sg=0,st=fail:1.0 151106
    send: 132-132-0-0 s=0,c=0,t=6,pt=0,l=0,sg=0,st=fail:
    find parent
    send: 132-132-255-255 s=255,c=3,t=7,pt=0,l=0,sg=0,st=bc:
    send: 132-132-0-0 s=1,c=0,t=7,pt=0,l=0,sg=0,st=fail:
    Node and 2 children presented.
    

    I'm going to try get everything on a breadboard, but now I see fails, what's that all about?

    PS will upload some pics of the soldered bridge...


  • Hardware Contributor

    @rsachoc google "mysensors st fail"


  • Hardware Contributor

    I am currently trying to use that red 3.3v module too and it doesn't seem to work. I have the sketch from above running with the "normal" blue module where I remove the voltage converter so that it works at 3.3V without a problem.
    Then I switched to the red one (with these small 3 solderpads connected) and the scl/sda lines switched (the order is different form the blue one) but the program gets stuck at the same position as above (without the st=fail's though). So I assume that

    si7021_env data = humiditySensor.getHumidityAndTemperature();
    

    fails. Does anyone have one of these sensors up and running? Any ideas where the error is? Otherwise I guess I have to stick with the blue ones.


  • Hardware Contributor

    @LastSamurai
    The red ones are HTU21D and need another library (they are different from the SI7021).
    Use the Adafruit library for this module (look on their site for HTU21D).



  • @GertSanders hmmm I think I'm using that same one as @LastSamurai so I suspect that's the issue? It's the one linked in the first post

    I guess if that's the problem it should have been obvious to me, it even says HTU21D on mine! Silly me!


  • Hardware Contributor

    @rsachoc
    Either one of these libraries will work with the HTU21D modules.

    0_1463432234134_Screen Shot 2016-05-16 at 22.55.51.png

    Both modules do the same, but have different I2C adresses so you can actually use both at the same time (of you like to compare them), but you need different libraries to call each one.


  • Hardware Contributor

    @GertSanders Thanks, I don't know why I didn't realize that 😉
    I will try that out tomorrow.



  • @LastSamurai I'm having a go as well at updating the .ino file with the different library, but I'm not a coder so I'm "having a hack" - if you have any luck could you post your code?


  • Hardware Contributor

    @rsachoc Yes, I actually just tried it out and its working.
    Here is my code for now (just for testing):
    I basically just switched libraries

    /* Sketch with Si7021 and battery monitoring.
    by m26872, 20151109 
    Changed by LastSamurai
    15052016
    */
    #include <MySensor.h>  
    #include <Wire.h>
    #include <SPI.h>
    #include <SparkFunHTU21D.h>
    #include <RunningAverage.h>
    
    //#define DEBUG
    
    #ifdef DEBUG
    #define DEBUG_SERIAL(x) Serial.begin(x)
    #define DEBUG_PRINT(x) Serial.print(x)
    #define DEBUG_PRINTLN(x) Serial.println(x)
    #else
    #define DEBUG_SERIAL(x)
    #define DEBUG_PRINT(x) 
    #define DEBUG_PRINTLN(x) 
    #endif
    
    #define NODE_ID 100             // <<<<<<<<<<<<<<<<<<<<<<<<<<<   Enter Node_ID
    #define CHILD_ID_TEMP 0
    #define CHILD_ID_HUM 1
    // #define SLEEP_TIME 15000 // 15s for DEBUG
    #define SLEEP_TIME 300000   // 5 min
    #define FORCE_TRANSMIT_CYCLE 36  // 5min*12=1/hour, 5min*36=1/3hour 
    #define BATTERY_REPORT_CYCLE 2016   // Once per 5min   =>   12*24*7 = 2016 (one report/week)
    #define VMIN 1900
    #define VMAX 3300
    #define HUMI_TRANSMIT_THRESHOLD 3.0  // THRESHOLD tells how much the value should have changed since last time it was transmitted.
    #define TEMP_TRANSMIT_THRESHOLD 0.5
    #define AVERAGES 2
    
    int batteryReportCounter = BATTERY_REPORT_CYCLE - 1;  // to make it report the first time.
    int measureCount = 0;
    float lastTemperature = -100;
    int lastHumidity = -100;
    
    RunningAverage raHum(AVERAGES);
    HTU21D humiditySensor;
    
    MySensor gw;
    MyMessage msgTemp(CHILD_ID_TEMP,V_TEMP); // Initialize temperature message
    MyMessage msgHum(CHILD_ID_HUM,V_HUM);
    
    void setup() {
      DEBUG_SERIAL(9600);    // <<<<<<<<<<<<<<<<<<<<<<<<<< Note BAUD_RATE in MySensors.h
      DEBUG_PRINTLN("Serial started");
      
      DEBUG_PRINT("Voltage: ");
      DEBUG_PRINT(readVcc()); 
      DEBUG_PRINTLN(" mV");
    
      delay(500);
      DEBUG_PRINT("Internal temp: ");
      DEBUG_PRINT(GetInternalTemp()); // Probably not calibrated. Just to print something.
      DEBUG_PRINTLN(" *C");
    
      delay(500); // Allow time for radio if power useed as reset
      gw.begin(NULL, NODE_ID);
      gw.sendSketchInfo("TempHumTest2", "1.0 17052016"); 
      gw.present(CHILD_ID_TEMP, S_TEMP);   // Present sensor to controller
      gw.present(CHILD_ID_HUM, S_HUM);
      DEBUG_PRINT("Node and "); DEBUG_PRINTLN("2 children presented.");
      
      raHum.clear();
      humiditySensor.begin();  
    }
    
    void loop() { 
    
      measureCount ++;
      batteryReportCounter ++;
      bool forceTransmit = false;
      
      if (measureCount > FORCE_TRANSMIT_CYCLE) {
        forceTransmit = true; 
      }
      sendTempHumidityMeasurements(forceTransmit);
    /*
      // Read and print internal temp
      float temperature0 = static_cast<float>(static_cast<int>((GetInternalTemp()+0.5) * 10.)) / 10.;
      DEBUG_PRINT("Internal Temp: "); DEBUG_PRINT(temperature0); DEBUG_PRINTLN(" *C");        
    */
      // Check battery
      if (batteryReportCounter >= BATTERY_REPORT_CYCLE) {
        long batteryVolt = readVcc();
        DEBUG_PRINT("Battery voltage: "); DEBUG_PRINT(batteryVolt); DEBUG_PRINTLN(" mV");
        uint8_t batteryPcnt = constrain(map(batteryVolt,VMIN,VMAX,0,100),0,255);   
        DEBUG_PRINT("Battery percent: "); DEBUG_PRINT(batteryPcnt); DEBUG_PRINTLN(" %");
        gw.sendBatteryLevel(batteryPcnt);
        batteryReportCounter = 0;
      }
      
      gw.sleep(SLEEP_TIME);
    }
    
    // function for reading Vcc by reading 1.1V reference against AVcc. Based from http://provideyourown.com/2012/secret-arduino-voltmeter-measure-battery-voltage/
    // To calibrate reading replace 1125300L with scale_constant = internal1.1Ref * 1023 * 1000, where internal1.1Ref = 1.1 * Vcc1 (per voltmeter) / Vcc2 (per readVcc() function) 
    long readVcc() {
      // set the reference to Vcc and the measurement to the internal 1.1V reference
      ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
      delay(2); // Wait for Vref to settle
      ADCSRA |= _BV(ADSC); // Start conversion
      while (bit_is_set(ADCSRA,ADSC)); // measuring
      uint8_t low  = ADCL; // must read ADCL first - it then locks ADCH  
      uint8_t high = ADCH; // unlocks both
      long result = (high<<8) | low;
      result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
      return result; // Vcc in millivolts
    }
    // function for reading internal temp. From http://playground.arduino.cc/Main/InternalTemperatureSensor 
    double GetInternalTemp(void) {  // (Both double and float are 4 byte in most arduino implementation)
      unsigned int wADC;
      double t;
      // The internal temperature has to be used with the internal reference of 1.1V. Channel 8 can not be selected with the analogRead function yet.
      ADMUX = (_BV(REFS1) | _BV(REFS0) | _BV(MUX3));   // Set the internal reference and mux.
      ADCSRA |= _BV(ADEN);  // enable the ADC
      delay(20);            // wait for voltages to become stable.
      ADCSRA |= _BV(ADSC);  // Start the ADC
      while (bit_is_set(ADCSRA,ADSC));   // Detect end-of-conversion
      wADC = ADCW;   // Reading register "ADCW" takes care of how to read ADCL and ADCH.
      t = (wADC - 88.0 ) / 1.0;   // The default offset is 324.31.
      return (t);   // The returned temperature in degrees Celcius.
    }
    
    /*********************************************
     * * Sends temperature and humidity from Si7021 sensor
     * Parameters
     * - force : Forces transmission of a value (even if it's the same as previous measurement)
     *********************************************/
    void sendTempHumidityMeasurements(bool force) {
      bool tx = force;
      
      float temperature = humiditySensor.readTemperature();
      DEBUG_PRINT("T: ");DEBUG_PRINTLN(temperature);
    
      float diffTemp = abs(lastTemperature - temperature);
      DEBUG_PRINT(F("TempDiff :"));DEBUG_PRINTLN(diffTemp);
    
      if (diffTemp > TEMP_TRANSMIT_THRESHOLD || tx) {
        gw.send(msgTemp.set(temperature,1));
        lastTemperature = temperature;
        measureCount = 0;
        DEBUG_PRINTLN("T sent!");
      }
      
      int humidity = humiditySensor.readHumidity();
      DEBUG_PRINT("H: ");DEBUG_PRINTLN(humidity);
    
      raHum.addValue(humidity);
      humidity = raHum.getAverage();  // MA sample imply reasonable fast sample frequency
      float diffHum = abs(lastHumidity - humidity);
      DEBUG_PRINT(F("HumDiff  :"));DEBUG_PRINTLN(diffHum); 
    
      if (diffHum > HUMI_TRANSMIT_THRESHOLD || tx) {
        gw.send(msgHum.set(humidity));
        lastHumidity = humidity;
        measureCount = 0;
        DEBUG_PRINTLN("H sent!");
      }
    
    }
    


  • @LastSamurai thanks, progress, I'm getting this now, which means it's working! Finally, a working node from a complete rookie like me!

    Serial started
    Voltage: 3389 mV
    Internal temp: 266.00 *C
    send: 100-100-0-0 s=255,c=3,t=15,pt=2,l=2,sg=0,st=ok:0
    send: 100-100-0-0 s=255,c=0,t=17,pt=0,l=5,sg=0,st=ok:1.5.4
    send: 100-100-0-0 s=255,c=3,t=6,pt=1,l=1,sg=0,st=ok:0
    read: 0-0-100 s=255,c=3,t=15,pt=0,l=2,sg=0:
    sensor started, id=100, parent=0, distance=1
    send: 100-100-0-0 s=255,c=3,t=11,pt=0,l=12,sg=0,st=fail:TempHumTest2
    send: 100-100-0-0 s=255,c=3,t=12,pt=0,l=12,sg=0,st=fail:1.0 17052016
    send: 100-100-0-0 s=0,c=0,t=6,pt=0,l=0,sg=0,st=fail:
    send: 100-100-0-0 s=1,c=0,t=7,pt=0,l=0,sg=0,st=fail:
    Node and 2 children presented.
    T: 998.00
    TempDiff :1098.00
    send: 100-100-0-0 s=0,c=1,t=0,pt=7,l=5,sg=0,st=fail:998.0
    T sent!
    H: 118
    HumDiff  :218.00
    send: 100-100-0-0 s=1,c=1,t=1,pt=2,l=2,sg=0,st=ok:118
    H sent!
    Battery voltage: 3359 mV
    Battery percent: 104 %
    send: 100-100-0-0 s=255,c=3,t=0,pt=1,l=1,sg=0,st=ok:104
    

    I think that the readings are not accurate though, not sure why, but I'll have a go at figuring our why anyway!


  • Hardware Contributor

    @rsachoc
    Congrats !!!


  • Hardware Contributor

    @GertSanders Thx a lot for your help! I had no clue about the HTU21D lib.



  • This post is deleted!


  • so with the correct library there is no need to solder those 3 spots together!?


  • Hardware Contributor

    @siod
    The "spots" are there to connect the pullup resistors to the SDA and SCL lines. This is always needed, regardless of the library of the board onto which you connect the sensor board does not provide pullup resistors itself. On a minimal board like the one in this thread, this is not the case, so the pull up resistors are needed.



  • ok, thanks for making it clear for me Gert!!

    update:

    finally found time to build my sensor and it seems to work fine, will do more testing but for now my results are:

    7.5 uA when sleeping, 15,3 mA when working (every 15 minutes for about 2seconds, but I think my cheap multimeter gives bad readings on those spikes, I guess it´s only around 1 mA)

    seems to be okay, isn´t it?

    edit:

    I have 2 reed switches attached. I recognized that I have +0,10 mA for each reed switch when activated. So when reed switches are both touching their counterpart I have a sleeping consumption of 0,20 mA. Why is that??



  • Hello,

    I'm trying to convert existing Si7021 sensor code from 1.5 to 2.0.0 library. I change the code and then I was getting an error which said:

    Si7021_sensor_MySensors_2.0.0:158: error: 'si7021_env' has no member named 'humidityPercent'
       int humidity = data.humidityPercent;
                           ^
    exit status 1
    'si7021_env' has no member named 'humidityPercent'
    

    Then I chech the Si7021 library, and how I saw there wasn't member 'humidityPercent', but there was a member 'humidityBasisPoints'.

    So I change line from:

      int humidity = data.humidityPercent;
    

    ...to:

      int humidity = data.humidityBasisPoints;
    

    Then code compiles and I upload it to Slim Node Si7021. I leave sensor and today I checked it log on Domoticz. I have this:
    0_1471539568477_chart.jpeg

    Temperature looks ok, but Humidity value jumping a lot, thats why I don't want to believe it is true.

    Could someone, who has a 2.0.0 library and Si7021 sensor chech is it same situation? Becose I have only one Si7021 sensor.
    Maybe someone could look also on the code and say if I convert it right?

    Converted code:

    /* Sketch with Si7021 and battery monitoring.
    by m26872, 20151109 
    */
    
    #define MY_DEBUG
    #define MY_RADIO_NRF24
    #define MY_NODE_ID 5             // <<<<<<<<<<<<<<<<<<<<<<<<<<<   Enter Node_ID
    #define MY_BAUD_RATE 115200
    
    #include <MySensors.h>  
    #include <Wire.h>
    #include <SI7021.h>
    #include <SPI.h>
    #include <RunningAverage.h>
    
    //#define DEBUG
    
    #ifdef DEBUG
    #define DEBUG_SERIAL(x) Serial.begin(x)
    #define DEBUG_PRINT(x) Serial.print(x)
    #define DEBUG_PRINTLN(x) Serial.println(x)
    #else
    #define DEBUG_SERIAL(x)
    #define DEBUG_PRINT(x) 
    #define DEBUG_PRINTLN(x) 
    #endif
    
    #define CHILD_ID_TEMP 0
    #define CHILD_ID_HUM 1
    // #define SLEEP_TIME 15000 // 15s for DEBUG
    #define SLEEP_TIME 300000   // 5 min
    #define FORCE_TRANSMIT_CYCLE 36  // 5min*12=1/hour, 5min*36=1/3hour 
    #define BATTERY_REPORT_CYCLE 2880   // Once per 5min   =>   12*24*7 = 2016 (one report/week)
    #define VMIN 1900
    #define VMAX 3300
    #define HUMI_TRANSMIT_THRESHOLD 3.0  // THRESHOLD tells how much the value should have changed since last time it was transmitted.
    #define TEMP_TRANSMIT_THRESHOLD 0.5
    #define AVERAGES 2
    
    int batteryReportCounter = BATTERY_REPORT_CYCLE - 1;  // to make it report the first time.
    int measureCount = 0;
    float lastTemperature = -100;
    int lastHumidity = -100;
    
    RunningAverage raHum(AVERAGES);
    SI7021 humiditySensor;
    
    MyMessage msgTemp(CHILD_ID_TEMP,V_TEMP); // Initialize temperature message
    MyMessage msgHum(CHILD_ID_HUM,V_HUM);
    
    
    void presentation()  
    { 
      sendSketchInfo("EgTmpHumBat5min", "1.0 151106");
      present(CHILD_ID_TEMP, S_TEMP);   // Present sensor to controller
      present(CHILD_ID_HUM, S_HUM);
    }
    
    
    void setup() {
      DEBUG_SERIAL(115200);    // <<<<<<<<<<<<<<<<<<<<<<<<<< Note BAUD_RATE in MySensors.h
      DEBUG_PRINTLN("Serial started");
      
      DEBUG_PRINT("Voltage: ");
      DEBUG_PRINT(readVcc()); 
      DEBUG_PRINTLN(" mV");
    /*
      delay(500);
      DEBUG_PRINT("Internal temp: ");
      DEBUG_PRINT(GetInternalTemp()); // Probably not calibrated. Just to print something.
      DEBUG_PRINTLN(" *C");
    */  
      delay(500); // Allow time for radio if power useed as reset
      DEBUG_PRINT("Node and "); DEBUG_PRINTLN("2 children presented.");
      
      raHum.clear();
      
    }
    
    void loop() { 
    
      measureCount ++;
      batteryReportCounter ++;
      bool forceTransmit = false;
      
      if (measureCount > FORCE_TRANSMIT_CYCLE) {
        forceTransmit = true; 
      }
      sendTempHumidityMeasurements(forceTransmit);
    /*
      // Read and print internal temp
      float temperature0 = static_cast<float>(static_cast<int>((GetInternalTemp()+0.5) * 10.)) / 10.;
      DEBUG_PRINT("Internal Temp: "); DEBUG_PRINT(temperature0); DEBUG_PRINTLN(" *C");        
    */
      // Check battery
      if (batteryReportCounter >= BATTERY_REPORT_CYCLE) {
        long batteryVolt = readVcc();
        DEBUG_PRINT("Battery voltage: "); DEBUG_PRINT(batteryVolt); DEBUG_PRINTLN(" mV");
        uint8_t batteryPcnt = constrain(map(batteryVolt,VMIN,VMAX,0,100),0,255);   
        DEBUG_PRINT("Battery percent: "); DEBUG_PRINT(batteryPcnt); DEBUG_PRINTLN(" %");
        sendBatteryLevel(batteryPcnt);
        batteryReportCounter = 0;
      }
      
      sleep(SLEEP_TIME);
    }
    
    // function for reading Vcc by reading 1.1V reference against AVcc. Based from http://provideyourown.com/2012/secret-arduino-voltmeter-measure-battery-voltage/
    // To calibrate reading replace 1125300L with scale_constant = internal1.1Ref * 1023 * 1000, where internal1.1Ref = 1.1 * Vcc1 (per voltmeter) / Vcc2 (per readVcc() function) 
    long readVcc() {
      // set the reference to Vcc and the measurement to the internal 1.1V reference
      ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
      delay(2); // Wait for Vref to settle
      ADCSRA |= _BV(ADSC); // Start conversion
      while (bit_is_set(ADCSRA,ADSC)); // measuring
      uint8_t low  = ADCL; // must read ADCL first - it then locks ADCH  
      uint8_t high = ADCH; // unlocks both
      long result = (high<<8) | low;
      result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
      return result; // Vcc in millivolts
    }
    // function for reading internal temp. From http://playground.arduino.cc/Main/InternalTemperatureSensor 
    double GetInternalTemp(void) {  // (Both double and float are 4 byte in most arduino implementation)
      unsigned int wADC;
      double t;
      // The internal temperature has to be used with the internal reference of 1.1V. Channel 8 can not be selected with the analogRead function yet.
      ADMUX = (_BV(REFS1) | _BV(REFS0) | _BV(MUX3));   // Set the internal reference and mux.
      ADCSRA |= _BV(ADEN);  // enable the ADC
      delay(20);            // wait for voltages to become stable.
      ADCSRA |= _BV(ADSC);  // Start the ADC
      while (bit_is_set(ADCSRA,ADSC));   // Detect end-of-conversion
      wADC = ADCW;   // Reading register "ADCW" takes care of how to read ADCL and ADCH.
      t = (wADC - 88.0 ) / 1.0;   // The default offset is 324.31.
      return (t);   // The returned temperature in degrees Celcius.
    }
    
    /*********************************************
     * * Sends temperature and humidity from Si7021 sensor
     * Parameters
     * - force : Forces transmission of a value (even if it's the same as previous measurement)
     *********************************************/
    void sendTempHumidityMeasurements(bool force) {
      bool tx = force;
    
      si7021_env data = humiditySensor.getHumidityAndTemperature();
      
      float temperature = data.celsiusHundredths / 100.0;
      DEBUG_PRINT("T: ");DEBUG_PRINTLN(temperature);
      float diffTemp = abs(lastTemperature - temperature);
      DEBUG_PRINT(F("TempDiff :"));DEBUG_PRINTLN(diffTemp);
      if (diffTemp > TEMP_TRANSMIT_THRESHOLD || tx) {
        send(msgTemp.set(temperature,1));
        lastTemperature = temperature;
        measureCount = 0;
        DEBUG_PRINTLN("T sent!");
      }
      
      int humidity = data.humidityPercent;
      DEBUG_PRINT("H: ");DEBUG_PRINTLN(humidity);
      raHum.addValue(humidity);
      humidity = raHum.getAverage();  // MA sample imply reasonable fast sample frequency
      float diffHum = abs(lastHumidity - humidity);  
      DEBUG_PRINT(F("HumDiff  :"));DEBUG_PRINTLN(diffHum); 
      if (diffHum > HUMI_TRANSMIT_THRESHOLD || tx) {
        send(msgHum.set(humidity));
        lastHumidity = humidity;
        measureCount = 0;
        DEBUG_PRINTLN("H sent!");
      }
    
    }
    

    Thank You!


  • Hero Member

    @jacikaas where did you get the si7021 library? Take a look at the sensebender sketch for a good reference.



  • @AWI
    I download Si7021 library from here: https://github.com/LowPowerLab/SI7021

    I was heard about Sensbender node, but never look deeper what is in it. I will look at it and try to understand whats in there. I just learning about all that stuff, so it will be good practice 😊


 

418
Online

7.5k
Users

8.3k
Topics

89.8k
Posts