Navigation

    • Register
    • Login
    • OpenHardware.io
    • Categories
    • Recent
    • Tags
    • Popular
    1. Home
    2. Oniric
    • Profile
    • Following
    • Followers
    • Topics
    • Posts
    • Best
    • Groups

    Oniric

    @Oniric

    2
    Reputation
    6
    Posts
    222
    Profile views
    0
    Followers
    0
    Following
    Joined Last Online

    Oniric Follow

    Best posts made by Oniric

    • RE: NRF24l01+, EEPROM and shared SPI = brick module ?

      @rejoe2 thanks ! i didnt see there was a specific sketch for it...
      i will try this tonight. concerning the I_DEBUG, just for my understanding, if i put the define with "E", it will automatically clear some setting in the eeprom so it's less invasive than the dedicated clear sketch. did i understand it right ?

      thanks a lot, it make me crazy for 2 days, but at least i found out some new features on mysensors 😉

      posted in Development
      Oniric
      Oniric
    • Example RFID MFRC522 + mysensors with "some" security

      Hello Everyone,

      I worked on a RFID sensors with mysensors to be able at the end to control automation in my house when we come/leave home. For the moment, i'm still at prototype stage, but I'm able to communicate to jeedom everything I need almost as i want it.

      For this I'm using Jeedom as a controller.

      Since i had a lot of trouble to make it work together and a difficult time to find example/documentation on this 2 modules combined (mfrc522 + nrf24l01+), i think it would be nice to share my experience.
      I know there is an example using other RFID reader with I2C but i already had 2 MFRC522 available and i like challenge ! 😉

      this code is based on: https://github.com/miguelbalboa/rfid/blob/master/examples/AccessControl/AccessControl.ino

      in summary:

      • I discover nrf24f01+ has a lot of trouble to share SPI with other device

      • I discover mysensors is using EEPROM so if you don't use mysensors eeprom function, you will mess everything up ! ☠

      • power regulators for nrf24l01+ are life saver

      • I learn a lot of things with this project, thanks mysensors 🙂

      goals:

      • have a (almost) secure RFID way to control my home : alarms, lights when i arrive or leave, secure some doors from my daughter etc 😉

      what is done:

      • prototype using breadboard
      • network encryption using mysensors
      • secure exchange (using RFID ID ...) through mysensors
      • Jeedom check

      improvements to make:

      • signing with mysensors
      • code factorisation ? it's too huge ! cant even enable whole debug anymore ...

      what it does:

      • use a master card to add/remove rfid tag from the node
      • check if RFID tag is known from the node.
      • if it's known it request a salt from the controler
      • then it will hash the ID with the salt using MD5 then sent it to the Controller with the salt.

      on the controller side :

      • the controller must know the RFID TAG ID
      • hash the ID with the salt and check if the result is the same than the node sent. if yes: start some scenarios, if not, send an alert.

      Security :

      • be aware that myfare classic can be copy
      • to prevent network replay i implemented a simple hash + salt challenge. it's not hack proof 100% but i didnt like the ID to go through the air. It would have been way to easy to hack (just sniff packet and replay then).

      i'm not an expert in Arduino nor mysensors so please, feel free to give me feedback.
      if you want more details i will be happy to share
      i code a simple scenario on jeedom to check hash value. if you want, i can share it too

      /*
         Original source: https://github.com/miguelbalboa/rfid
      
         This example showing a complete Door Access Control System
      
        Simple Work Flow (not limited to) :
                                           +---------+
        +----------------------------------->READ TAGS+^------------------------------------------+
        |                              +--------------------+                                     |
        |                              |                    |                                     |
        |                              |                    |                                     |
        |                         +----v-----+        +-----v----+                                |
        |                         |MASTER TAG|        |OTHER TAGS|                                |
        |                         +--+-------+        ++-------------+                            |
        |                            |                 |             |                            |
        |                            |                 |             |                            |
        |                      +-----v---+        +----v----+   +----v------+                     |
        |         +------------+READ TAGS+---+    |KNOWN TAG|   |UNKNOWN TAG|                     |
        |         |            +-+-------+   |    +-----------+ +------------------+              |
        |         |              |           |                |                    |              |
        |    +----v-----+   +----v----+   +--v--------+     +-v----------+  +------v----+         |
        |    |MASTER TAG|   |KNOWN TAG|   |UNKNOWN TAG|     |GRANT ACCESS|  |DENY ACCESS|         |
        |    +----------+   +---+-----+   +-----+-----+     +-----+------+  +-----+-----+         |
        |                       |               |                 |               |               |
        |       +----+     +----v------+     +--v---+             |               +--------------->
        +-------+EXIT|     |DELETE FROM|     |ADD TO|             |                               |
                +----+     |  EEPROM   |     |EEPROM|             |                               |
                           +-----------+     +------+             +-------------------------------+
      
      
         Use a Master Card which is act as Programmer then you can able to choose card holders who will granted access or not
      
       * **Easy User Interface**
         Just one RFID tag needed whether Delete or Add Tags. You can choose to use Leds for output or Serial LCD module to inform users.
       * **Stores Information on EEPROM**
         Information stored on non volatile Arduino's EEPROM memory to preserve Users' tag and Master Card. No Information lost
         if power lost. EEPROM has unlimited Read cycle but roughly 100,000 limited Write cycle.
       * **Security**
         To keep it simple we are going to use Tag's Unique IDs. It's simple and not hacker proof.
      
        /*
         my implementation using soft SPI
          ----------------------------------------
                          MFRC522      Arduino
                          Reader/PCD   Nano v3
         Signal           Pin          Pin
         -------------------------------------------
         RST/Reset(CE)    RST          D9
         SPI SS(CSN)      SDA(SS)      D10
         SPI MOSI         MOSI         A1
         SPI MISO         MISO         A2
         SPI SCK          SCK          A0
      
         rc522 is alimented with 3.3V
         RF24l01+ is alimented using 3.3V
         /!\ if using regulator for nrf24l01+, dont forget to aliment it in 5v instead of 3.3V
      */
      
      /*
         Implemented:
          - encryption
          - soft spi for mysensors
          - rc522 rfid
          - send encrypted id (using md5 + salt (not the best because it should be based on time + seed but require time sync)
      */
      
      /*
         Todo:
         - signing
         - implement a more secure authentification rather than using UID
         - send add/remove id to gateway
      */
      // Enable debug prints mysensors to serial monitor
      //#define MY_DEBUG
      
      // Enable debug print for this program, also allow to register a new master card
      //#define DEBUG_ON
      
      #ifdef DEBUG_ON
      #define DEBUG_PRINT(x)   Serial.print(x)
      #define DEBUG_PRINTLN(x) Serial.println(x)
      #else
      #define DEBUG_PRINT(x)
      #define DEBUG_PRINTLN(x)
      #endif
      
      
      #define MY_RADIO_NRF24
      #define RFID_HASH1 1
      #define RFID_HASH2 2
      #define RFID_HASH3 3
      //#define RFID       4
      //#define MY_NODE_ID 42
      #define BAUDR 115200
      #define MY_BAUD_RATE BAUDR
      
      #define MY_ENCRYPTION_SIMPLE_PASSWD "randomstring"
      
      // mysensors: Define this to use a software based SPI driver which allows more freedom in pin selection for the (supported) radio module.
      #define   MY_SOFTSPI
      // mysensors:  Soft SPI SCK pin.
      #define   MY_SOFT_SPI_SCK_PIN   (14)
      // mysensors:  Soft SPI MISO pin.
      #define   MY_SOFT_SPI_MISO_PIN   (16)
      // mysensors:  Soft SPI MOSI pin.
      #define   MY_SOFT_SPI_MOSI_PIN   (15)
      
      
      #include <SPI.h>        // RC522 Module uses SPI protocol
      #include <MFRC522.h>  // Library for Mifare RC522 Devices
      #include <MySensors.h>
      #include <MD5.h>
      
      
      
      #ifdef COMMON_ANODE
      #define LED_ON LOW
      #define LED_OFF HIGH
      #else
      #define LED_ON HIGH
      #define LED_OFF LOW
      #endif
      
      #define redLed 7    // Set Led Pins
      #define greenLed 6
      #define blueLed 5
      
      //#define relay 4     // Set Relay Pin
      #define wipeB 3     // Button pin for WipeMode
      
      bool programMode = false;  // initialize programming mode to false
      
      uint8_t successRead;    // Variable integer to keep if we have Successful Read from Reader
      
      byte storedCard[4];   // Stores an ID read from EEPROM
      byte readCard[4];   // Stores scanned ID read from RFID Module
      byte masterCard[4];   // Stores master card's ID read from EEPROM
      byte dumpedCard[4];
      static const uint8_t MAGIC = 168;
      // Create MFRC522 instance.
      /*
        #define SS_PINRC 10
        #define RST_PINRC 9*/
      #define SS_PINRC 4
      #define RST_PINRC 2
      MFRC522 mfrc522(SS_PINRC, RST_PINRC);
      
      
      
      
      ///////////////////////////////////////// Setup ///////////////////////////////////
      void setup() {
        //release spi for nrf24l01+
        pinMode(RST_PINRC, OUTPUT);
        digitalWrite(RST_PINRC, LOW);
        pinMode(SS_PINRC, OUTPUT);
        digitalWrite(SS_PINRC, LOW);
        //Protocol Configuration
        //Serial.begin(9600);  // Initialize serial communications with PC
        Serial.begin(BAUDR);  // Initialize serial communications with PC
        SPI.begin();           // MFRC522 Hardware uses SPI protocol
        mfrc522.PCD_Init();    // Initialize MFRC522 Hardware
      
        //Arduino Pin Configuration
        pinMode(redLed, OUTPUT);
        pinMode(greenLed, OUTPUT);
        pinMode(blueLed, OUTPUT);
        pinMode(wipeB, INPUT_PULLUP);   // Enable pin's pull up resistor
        digitalWrite(redLed, LED_OFF);  // Make sure led is off
        digitalWrite(greenLed, LED_OFF);  // Make sure led is off
        digitalWrite(blueLed, LED_OFF); // Make sure led is off
      
      
      
        //If you set Antenna Gain to Max it will increase reading distance but require a better power source than arduino itself
        //mfrc522.PCD_SetAntennaGain(mfrc522.RxGain_max);
      
        Serial.println(F("Access Control v2.0"));   // For debugging purposes
      #ifdef DEBUG_ON
        ShowReaderDetails();  // Show details of PCD - MFRC522 Card Reader details
        checkWipe();
      #endif
        // Check if master card defined, if not let user choose a master card
        // This also useful to just redefine the Master Card
        // You can keep other EEPROM records just write other than MAGIC to EEPROM address 1
        // EEPROM address 1 should hold magical number which is 'MAGIC'
        if (loadState(1) != MAGIC) {
      #ifdef DEBUG_ON
          DEBUG_PRINTLN(F("No Master Card Defined"));
          DEBUG_PRINTLN(F("Scan A PICC to Define as Master Card"));
          do {
            successRead = getID();            // sets successRead to 1 when we get read from reader otherwise 0
            digitalWrite(blueLed, LED_ON);    // Visualize Master Card need to be defined
            delay(200);
            digitalWrite(blueLed, LED_OFF);
            delay(200);
          }
          while (!successRead);                  // Program will not go further while you not get a successful read
          saveCard(2, readCard);
          saveState(0, 0);
          saveState(1, MAGIC);                  // Write to EEPROM we defined Master Card.
          DEBUG_PRINTLN(F("Master Card Defined"));
      #else
          Serial.println(F("SYSTEM HALTED: No Master Card."));
          // Visualize system is halted
          digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
          digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
          digitalWrite(redLed, LED_ON);   // Turn on red LED
          while (true); // do not go further
      #endif
        }
      
        DEBUG_PRINTLN(F("-------------------"));
      
        loadCard(2, masterCard);
      #ifdef DEBUG_ON
        dumpIDs();
      #endif
      
        randomSeed(analogRead(7));
      
        DEBUG_PRINTLN(F("-------------------"));
        DEBUG_PRINTLN(F("Everything is ready"));
        DEBUG_PRINTLN(F("Waiting PICCs to be scanned"));
      
      
      //  Serial.print("stack");
      //  Serial.println(freeMemory());
        cycleLeds();    // Everything ready lets give user some feedback by cycling leds
      }
      
      
      
      
      ///////////////////////////////////////// Mysensors presentation ///////////////////////////////////
      MyMessage MsgHash1(RFID_HASH1, V_TEXT);
      MyMessage MsgHash2(RFID_HASH2, V_TEXT);
      //MyMessage MsgLock(RFID, V_LOCK_STATUS);
      MyMessage MsgSALT(RFID_HASH3, V_TEXT);
      void presentation()
      {
        // Send the sketch version information to the gateway and Controller
        sendSketchInfo("RFID Sensor", "2.3");
      
        // Register all sensors to gw (they will be created as child devices)
        present(RFID_HASH1, S_INFO);
        present(RFID_HASH2, S_INFO);
        present(RFID_HASH3, S_INFO);
        // present(RFID, S_LOCK);
      }
      
      
      ///////////////////////////////////////// Main Loop ///////////////////////////////////
      void loop () {
      //  Serial.print("stack");
      //  Serial.println(freeMemory());
        do {
          successRead = getID();  // sets successRead to 1 when we get read from reader otherwise 0
          if (programMode) {
            cycleLeds();              // Program Mode cycles through Red Green Blue waiting to read a new card
          }
          else {
            normalModeOn();     // Normal mode, blue Power LED is on, all others are off
          }
        }
        while (!successRead);   //the program will not go further while you are not getting a successful read
        if (programMode) {
          if ( isMaster(readCard) ) { //When in program mode check First If master card scanned again to exit program mode
            /*
              DEBUG_PRINTLN(F("Master Card Scanned"));
              DEBUG_PRINTLN(F("Exiting Program Mode"));
              DEBUG_PRINTLN(F("-----------------------------"));
            */
            programMode = false;
            return;
          }
          else {
            if ( findID(readCard) ) { // If scanned card is known delete it
      
              DEBUG_PRINTLN(F("I know this PICC, removing..."));
      
              deleteID(readCard);
      
              DEBUG_PRINTLN("-----------------------------");
              DEBUG_PRINTLN(F("Scan a PICC to ADD or REMOVE to EEPROM"));
      
            }
            else {                    // If scanned card is not known add it
              DEBUG_PRINTLN(F("I do not know this PICC, adding..."));
              writeID(readCard);
      
              DEBUG_PRINTLN(F("-----------------------------"));
              DEBUG_PRINTLN(F("Scan a PICC to ADD or REMOVE to EEPROM"));
            }
          }
        }
        else {
          if ( isMaster(readCard)) {    // If scanned card's ID matches Master Card's ID - enter program mode
            programMode = true;
            /*
                  DEBUG_PRINTLN(F("Hello Master - Entered Program Mode"));
              #ifdef DEBUG_ON
                  dumpIDs();
              #endif
                  DEBUG_PRINTLN(F("Scan a PICC to ADD or REMOVE to EEPROM"));
                  DEBUG_PRINTLN(F("Scan Master Card again to Exit Program Mode"));
                  DEBUG_PRINTLN(F("-----------------------------"));
            */
          }
          else {
            if ( findID(readCard) ) { // If not, see if the card is in the EEPROM
      
              //  DEBUG_PRINTLN(F("Welcome, You shall pass"));
              granted();
      
            }
            else {      // If not, show that the ID was not valid
              //  DEBUG_PRINTLN(F("You shall not pass"));
              denied();
            }
      
          }
        }
      }
      
      /////////////////////////////////////////  Access Granted    ///////////////////////////////////
      //bool status = false;
      uint8_t deniedCount = 1;
      
      void granted () {
        digitalWrite(blueLed, LED_OFF);   // Turn off blue LED
        digitalWrite(redLed, LED_OFF);  // Turn off red LED
        digitalWrite(greenLed, LED_ON);   // Turn on green LED
        request(RFID_HASH3, V_TEXT);
        wait(5000);
        /*char answer[12] = "XXXYYYYYYYY";
          int16_t randNumber = random(100, 999);
          sprintf(answer, "%u", randNumber);
          byte_to_hexa(card, 4, answer + 3);
      
          unsigned char* hash = MD5::make_hash(answer);
          //generate the digest (hex encoding) of our hash
          char *md5str = MD5::make_digest(hash, 16);
          free(hash);
          //print it on our serial monitor
      
          //  DEBUG_PRINT("value:");
          //  DEBUG_PRINT(answer);
          //  DEBUG_PRINT(", hash:");
          //  DEBUG_PRINTLN(md5str);
      
          //mysensors
          send(MsgSALT.set(randNumber));
          send(MsgHash2.set(md5str + 15));
          md5str[15] = '\0';
          send(MsgHash1.set(md5str));
          //Give the Memory back to the System if you run the md5 Hash generation in a loop
          free(md5str);
          // send(MsgLock.set(status ? 0 : 1));
          // status = !status;
          delay(1000);            // Hold green LED on for a second
          deniedCount = 1;*/
      }
      
      
      ///////////////////////////////////////// Access Denied  ///////////////////////////////////
      void denied() {
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        digitalWrite(redLed, LED_ON);   // Turn on red LED
        //mysensors
        char answer[12] = "KO XXXXXXXX";
        byte_to_hexa(readCard, 4, answer + 3);
        //mysensors
        send(MsgHash1.set(answer));
        delay(1000 * deniedCount);
        deniedCount++;
      }
      
      
      ///////////////////////////////////////// Get PICC's UID ///////////////////////////////////
      uint8_t getID() {
        // Getting ready for Reading PICCs
        if ( ! mfrc522.PICC_IsNewCardPresent()) { //If a new PICC placed to RFID reader continue
          return 0;
        }
        if ( ! mfrc522.PICC_ReadCardSerial()) {   //Since a PICC placed get Serial and continue
          return 0;
        }
        // There are Mifare PICCs which have 4 byte or 7 byte UID care if you use 7 byte PICC
        // I think we should assume every PICC as they have 4 byte UID
        // Until we support 7 byte PICCs
        Serial.println(F("Scanned PICC's UID:"));
        for ( uint8_t i = 0; i < 4; i++) {  //
          readCard[i] = mfrc522.uid.uidByte[i];
          Serial.print(readCard[i], HEX);
        }
        Serial.println("");
        mfrc522.PICC_HaltA(); // Stop reading
        return 1;
      }
      
      void ShowReaderDetails() {
        // Get the MFRC522 software version
        byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
        Serial.print(F("MFRC522 Software Version: 0x"));
        Serial.print(v, HEX);
        if (v == 0x91)
          Serial.print(F(" = v1.0"));
        else if (v == 0x92)
          Serial.print(F(" = v2.0"));
        else
          Serial.print(F(" (unknown),probably a chinese clone?"));
        Serial.println("");
        // When 0x00 or 0xFF is returned, communication probably failed
        if ((v == 0x00) || (v == 0xFF)) {
          Serial.println(F("SYSTEM HALTED: Check connections."));
          // Visualize system is halted
          digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
          digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
          digitalWrite(redLed, LED_ON);   // Turn on red LED
          while (true); // do not go further
        }
      }
      
      ///////////////////////////////////////// Cycle Leds (Program Mode) ///////////////////////////////////
      void cycleLeds() {
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_ON);   // Make sure green LED is on
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        delay(200);
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        digitalWrite(blueLed, LED_ON);  // Make sure blue LED is on
        delay(200);
        digitalWrite(redLed, LED_ON);   // Make sure red LED is on
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        delay(200);
      }
      
      //////////////////////////////////////// Normal Mode Led  ///////////////////////////////////
      void normalModeOn () {
        digitalWrite(blueLed, LED_ON);  // Blue LED ON and ready to read card
        digitalWrite(redLed, LED_OFF);  // Make sure Red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure Green LED is off
      }
      
      //////////////////////////////////////// Read an ID from EEPROM //////////////////////////////
      void readID( uint8_t number ) {
        uint8_t start = (number * 4 ) + 2;    // Figure out starting position
        loadCard(start, storedCard);
      }
      
      ///////////////////////////////////////// Add ID to EEPROM   ///////////////////////////////////
      void writeID( byte a[] ) {
        if ( !findID( a ) ) {     // Before we write to the EEPROM, check to see if we have seen this card before!
          uint8_t num = loadState(0);     // Get the numer of used spaces, position 0 stores the number of ID cards
          uint8_t start = ( num * 4 ) + 6;  // Figure out where the next slot starts
          num++;                // Increment the counter by one
          saveState( 0, num );     // Write the new count to the counter
          saveCard(start, a);
          successWrite();
          Serial.println(F("Write Success"));
        }
        else {
          failedWrite();
          Serial.println(F("Write Failed!"));
        }
      }
      
      ///////////////////////////////////////// Remove ID from EEPROM   ///////////////////////////////////
      void deleteID( byte a[] ) {
        if ( !findID( a ) ) {     // Before we delete from the EEPROM, check to see if we have this card!
          failedWrite();      // If not
          Serial.println(F("Delete Failed!"));
        }
        else {
          uint8_t num = loadState(0);   // Get the numer of used spaces, position 0 stores the number of ID cards
          uint8_t slot;       // Figure out the slot number of the card
          uint8_t start;      // = ( num * 4 ) + 6; // Figure out where the next slot starts
          uint8_t looping;    // The number of times the loop repeats
          uint8_t j;
          uint8_t count = loadState(0); // Read the first Byte of EEPROM that stores number of cards
          slot = findIDSLOT( a );   // Figure out the slot number of the card to delete
          start = (slot * 4) + 2;
          looping = ((num - slot) * 4);
          num--;      // Decrement the counter by one
          saveState( 0, num );   // Write the new count to the counter
          for ( j = 0; j < looping; j++ ) {         // Loop the card shift times
            saveState( start + j, loadState(start + 4 + j));   // Shift the array values to 4 places earlier in the EEPROM
          }
      
          successDelete();
          Serial.println(F("Delete Success"));
        }
      }
      
      ///////////////////////////////////////// Check Bytes   ///////////////////////////////////
      bool checkTwo ( byte a[], byte b[] ) {
        for ( uint8_t k = 0; k < 4; k++ ) {   // Loop 4 times
          if ( a[k] != b[k] ) {     // IF a != b then false, because: one fails, all fail
            return false;
          }
        }
        return true;
      }
      
      ///////////////////////////////////////// Find Slot   ///////////////////////////////////
      uint8_t findIDSLOT( byte find[] ) {
        uint8_t count = loadState(0);       // Read the first Byte of EEPROM that
        for ( uint8_t i = 1; i <= count; i++ ) {    // Loop once for each EEPROM entry
          readID(i);                // Read an ID from EEPROM, it is stored in storedCard[4]
          if ( checkTwo( find, storedCard ) ) {   // Check to see if the storedCard read from EEPROM
            // is the same as the find[] ID card passed
            return i;         // The slot number of the card
          }
        }
      }
      
      ///////////////////////////////////////// Find ID From EEPROM   ///////////////////////////////////
      bool findID( byte find[] ) {
        uint8_t count = loadState(0);     // Read the first Byte of EEPROM that
        for ( uint8_t i = 1; i <= count; i++ ) {    // Loop once for each EEPROM entry
          readID(i);          // Read an ID from EEPROM, it is stored in storedCard[4]
          if ( checkTwo( find, storedCard ) )    // Check to see if the storedCard read from EEPROM
            return true;
        }
        return false;
      }
      
      ///////////////////////////////////////// Write Success to EEPROM   ///////////////////////////////////
      // Flashes the green LED 3 times to indicate a successful write to EEPROM
      void successWrite() {
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is on
        delay(200);
        digitalWrite(greenLed, LED_ON);   // Make sure green LED is on
        delay(200);
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        delay(200);
        digitalWrite(greenLed, LED_ON);   // Make sure green LED is on
        delay(200);
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        delay(200);
        digitalWrite(greenLed, LED_ON);   // Make sure green LED is on
        delay(200);
      }
      
      ///////////////////////////////////////// Write Failed to EEPROM   ///////////////////////////////////
      // Flashes the red LED 3 times to indicate a failed write to EEPROM
      void failedWrite() {
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        delay(200);
        digitalWrite(redLed, LED_ON);   // Make sure red LED is on
        delay(200);
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        delay(200);
        digitalWrite(redLed, LED_ON);   // Make sure red LED is on
        delay(200);
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        delay(200);
        digitalWrite(redLed, LED_ON);   // Make sure red LED is on
        delay(200);
      }
      
      ///////////////////////////////////////// Success Remove UID From EEPROM  ///////////////////////////////////
      // Flashes the blue LED 3 times to indicate a success delete to EEPROM
      void successDelete() {
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        delay(200);
        digitalWrite(blueLed, LED_ON);  // Make sure blue LED is on
        delay(200);
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        delay(200);
        digitalWrite(blueLed, LED_ON);  // Make sure blue LED is on
        delay(200);
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        delay(200);
        digitalWrite(blueLed, LED_ON);  // Make sure blue LED is on
        delay(200);
      }
      
      ////////////////////// Check readCard IF is masterCard   ///////////////////////////////////
      // Check to see if the ID passed is the master programing card
      bool isMaster( byte test[] ) {
        return checkTwo(test, masterCard);
      }
      
      bool monitorWipeButton(uint32_t interval) {
        uint32_t now = (uint32_t)millis();
        while ((uint32_t)millis() - now < interval)  {
          // check on every half a second
          if (((uint32_t)millis() % 500) == 0) {
            if (digitalRead(wipeB) != LOW)
              return false;
          }
        }
        return true;
      }
      
      /* save a card (card is an array of 4) into eeprom starting from startPos
          0: count
          1: magic (MAGIC)
          2 - 5 : master
          n - (n+4): cards
      */
      void saveCard(uint8_t startPos, byte *card) {
        for ( uint8_t j = 0; j < 4; j++ ) {        // Loop 4 times
          saveState( startPos + j, card[j] );  // Write scanned PICC's UID to EEPROM, start from address 3
        }
      }
      
      void loadCard(uint8_t startPos, byte *card) {
        for ( uint8_t i = 0; i < 4; i++ )    // Read Card's UID from EEPROM
          card[i] = loadState(startPos + i);    // Write it to the card
      }
      #ifdef DEBUG_ON
      void dumpIDs() {
        if (loadState(1) != MAGIC) {
          Serial.println("Wrong Magic Number");
          return;
        }
        uint8_t start = 0;
        uint8_t num = loadState(0);
        Serial.print("ID Count:");
        Serial.print(num);
        Serial.println("");
      
        Serial.print("Master ID:");
        loadCard(2, dumpedCard);
        for (uint8_t i = 0; i < 4; i++)
          Serial.print(dumpedCard[i], HEX);
        Serial.println("");
        for (uint8_t card = 0; card < num; card++) {
          start = (card * 4 ) + 6;
          Serial.print("card ");
          Serial.print(card + 1);
          Serial.print(":");
          loadCard(start, dumpedCard);
          for (uint8_t i = 0; i < 4; i++)
            Serial.print(dumpedCard[i], HEX);
          Serial.println("");
        }
        Serial.println("=== END dump ===");
      }
      
      
      void checkWipe() {
        //Wipe Code - If the Button (wipeB) Pressed while setup run (powered on) it wipes EEPROM
        if (digitalRead(wipeB) == LOW) {  // when button pressed pin should get low, button connected to ground
          digitalWrite(redLed, LED_ON); // Red Led stays on to inform user we are going to wipe
          Serial.println(F("Wipe Button Pressed, you have 5sec"));
          bool buttonState = monitorWipeButton(5000); // Give user enough time to cancel operation
          if (buttonState == true && digitalRead(wipeB) == LOW) {    // If button still be pressed, wipe EEPROM
            Serial.println(F("Starting Wiping"));
            saveState(0, 0 );     // light wipe. only erase number
            saveState(1, 0);      // light wipe. only erase magic number
            Serial.println(F("EEPROM Successfully Wiped"));
            digitalWrite(redLed, LED_OFF);  // visualize a successful wipe
            delay(200);
            digitalWrite(redLed, LED_ON);
            delay(200);
            digitalWrite(redLed, LED_OFF);
            delay(200);
            digitalWrite(redLed, LED_ON);
            delay(200);
            digitalWrite(redLed, LED_OFF);
          }
          else {
            Serial.println(F("Wiping Cancelled")); // Show some feedback that the wipe button did not pressed for 5 seconds
            digitalWrite(redLed, LED_OFF);
          }
        }
      }
      #endif
      
      void byte_to_hexa(byte array[], unsigned int len, char buffer[])
      {
        for (unsigned int i = 0; i < len; i++)
        {
          byte nib1 = (array[i] >> 4) & 0x0F;
          byte nib2 = (array[i] >> 0) & 0x0F;
          buffer[i * 2 + 0] = nib1  < 0xA ? '0' + nib1  : 'A' + nib1  - 0xA;
          buffer[i * 2 + 1] = nib2  < 0xA ? '0' + nib2  : 'A' + nib2  - 0xA;
        }
        buffer[len * 2] = '\0';
      }
      
      void receive(const MyMessage &message)
      {
        if (message.type != V_TEXT)
          return;
        char* salt = message.getString();
        char answer[12] = "XXXYYYYYYYY";
        for (uint8_t i = 0; i < 4; i++)
          answer[i] = salt[i];
        byte_to_hexa(readCard, 4, answer + 3);
      
        unsigned char* hash = MD5::make_hash(answer);
        //generate the digest (hex encoding) of our hash
        char *md5str = MD5::make_digest(hash, 16);
        free(hash);
      
        //  DEBUG_PRINT("value:");
        //  DEBUG_PRINT(answer);
        //  DEBUG_PRINT(", hash:");
        //  DEBUG_PRINTLN(md5str);
        Serial.print("sel: ");
        Serial.println(message.getString());
        //mysensors
        send(MsgSALT.set(salt));
        send(MsgHash2.set(md5str + 15));
        md5str[15] = '\0';
        send(MsgHash1.set(md5str));
        //Give the Memory back to the System if you run the md5 Hash generation in a loop
        free(md5str);
        // send(MsgLock.set(status ? 0 : 1));
        // status = !status;
        //delay(1000);            // Hold green LED on for a second
        deniedCount = 1;
        // Serial.print("stack");
        // Serial.println(freeMemory());
      }
      /*
      //https://learn.adafruit.com/memories-of-an-arduino/measuring-free-memory
      #ifdef __arm__
      // should use uinstd.h to define sbrk but Due causes a conflict
      extern "C" char* sbrk(int incr);
      #else  // __ARM__
      extern char *__brkval;
      #endif  // __arm__
      
      int freeMemory() {
        char top;
      #ifdef __arm__
        return &top - reinterpret_cast<char*>(sbrk(0));
      #elif defined(CORE_TEENSY) || (ARDUINO > 103 && ARDUINO != 151)
        return &top - __brkval;
      #else  // __arm__
        return __brkval ? &top - __brkval : &top - __malloc_heap_start;
      #endif  // __arm__
      }
      */
      
      

      when you test it for the first time, dont forget to enable DEBUG_ON to register a master card

      posted in My Project
      Oniric
      Oniric

    Latest posts made by Oniric

    • Example RFID MFRC522 + mysensors with "some" security

      Hello Everyone,

      I worked on a RFID sensors with mysensors to be able at the end to control automation in my house when we come/leave home. For the moment, i'm still at prototype stage, but I'm able to communicate to jeedom everything I need almost as i want it.

      For this I'm using Jeedom as a controller.

      Since i had a lot of trouble to make it work together and a difficult time to find example/documentation on this 2 modules combined (mfrc522 + nrf24l01+), i think it would be nice to share my experience.
      I know there is an example using other RFID reader with I2C but i already had 2 MFRC522 available and i like challenge ! 😉

      this code is based on: https://github.com/miguelbalboa/rfid/blob/master/examples/AccessControl/AccessControl.ino

      in summary:

      • I discover nrf24f01+ has a lot of trouble to share SPI with other device

      • I discover mysensors is using EEPROM so if you don't use mysensors eeprom function, you will mess everything up ! ☠

      • power regulators for nrf24l01+ are life saver

      • I learn a lot of things with this project, thanks mysensors 🙂

      goals:

      • have a (almost) secure RFID way to control my home : alarms, lights when i arrive or leave, secure some doors from my daughter etc 😉

      what is done:

      • prototype using breadboard
      • network encryption using mysensors
      • secure exchange (using RFID ID ...) through mysensors
      • Jeedom check

      improvements to make:

      • signing with mysensors
      • code factorisation ? it's too huge ! cant even enable whole debug anymore ...

      what it does:

      • use a master card to add/remove rfid tag from the node
      • check if RFID tag is known from the node.
      • if it's known it request a salt from the controler
      • then it will hash the ID with the salt using MD5 then sent it to the Controller with the salt.

      on the controller side :

      • the controller must know the RFID TAG ID
      • hash the ID with the salt and check if the result is the same than the node sent. if yes: start some scenarios, if not, send an alert.

      Security :

      • be aware that myfare classic can be copy
      • to prevent network replay i implemented a simple hash + salt challenge. it's not hack proof 100% but i didnt like the ID to go through the air. It would have been way to easy to hack (just sniff packet and replay then).

      i'm not an expert in Arduino nor mysensors so please, feel free to give me feedback.
      if you want more details i will be happy to share
      i code a simple scenario on jeedom to check hash value. if you want, i can share it too

      /*
         Original source: https://github.com/miguelbalboa/rfid
      
         This example showing a complete Door Access Control System
      
        Simple Work Flow (not limited to) :
                                           +---------+
        +----------------------------------->READ TAGS+^------------------------------------------+
        |                              +--------------------+                                     |
        |                              |                    |                                     |
        |                              |                    |                                     |
        |                         +----v-----+        +-----v----+                                |
        |                         |MASTER TAG|        |OTHER TAGS|                                |
        |                         +--+-------+        ++-------------+                            |
        |                            |                 |             |                            |
        |                            |                 |             |                            |
        |                      +-----v---+        +----v----+   +----v------+                     |
        |         +------------+READ TAGS+---+    |KNOWN TAG|   |UNKNOWN TAG|                     |
        |         |            +-+-------+   |    +-----------+ +------------------+              |
        |         |              |           |                |                    |              |
        |    +----v-----+   +----v----+   +--v--------+     +-v----------+  +------v----+         |
        |    |MASTER TAG|   |KNOWN TAG|   |UNKNOWN TAG|     |GRANT ACCESS|  |DENY ACCESS|         |
        |    +----------+   +---+-----+   +-----+-----+     +-----+------+  +-----+-----+         |
        |                       |               |                 |               |               |
        |       +----+     +----v------+     +--v---+             |               +--------------->
        +-------+EXIT|     |DELETE FROM|     |ADD TO|             |                               |
                +----+     |  EEPROM   |     |EEPROM|             |                               |
                           +-----------+     +------+             +-------------------------------+
      
      
         Use a Master Card which is act as Programmer then you can able to choose card holders who will granted access or not
      
       * **Easy User Interface**
         Just one RFID tag needed whether Delete or Add Tags. You can choose to use Leds for output or Serial LCD module to inform users.
       * **Stores Information on EEPROM**
         Information stored on non volatile Arduino's EEPROM memory to preserve Users' tag and Master Card. No Information lost
         if power lost. EEPROM has unlimited Read cycle but roughly 100,000 limited Write cycle.
       * **Security**
         To keep it simple we are going to use Tag's Unique IDs. It's simple and not hacker proof.
      
        /*
         my implementation using soft SPI
          ----------------------------------------
                          MFRC522      Arduino
                          Reader/PCD   Nano v3
         Signal           Pin          Pin
         -------------------------------------------
         RST/Reset(CE)    RST          D9
         SPI SS(CSN)      SDA(SS)      D10
         SPI MOSI         MOSI         A1
         SPI MISO         MISO         A2
         SPI SCK          SCK          A0
      
         rc522 is alimented with 3.3V
         RF24l01+ is alimented using 3.3V
         /!\ if using regulator for nrf24l01+, dont forget to aliment it in 5v instead of 3.3V
      */
      
      /*
         Implemented:
          - encryption
          - soft spi for mysensors
          - rc522 rfid
          - send encrypted id (using md5 + salt (not the best because it should be based on time + seed but require time sync)
      */
      
      /*
         Todo:
         - signing
         - implement a more secure authentification rather than using UID
         - send add/remove id to gateway
      */
      // Enable debug prints mysensors to serial monitor
      //#define MY_DEBUG
      
      // Enable debug print for this program, also allow to register a new master card
      //#define DEBUG_ON
      
      #ifdef DEBUG_ON
      #define DEBUG_PRINT(x)   Serial.print(x)
      #define DEBUG_PRINTLN(x) Serial.println(x)
      #else
      #define DEBUG_PRINT(x)
      #define DEBUG_PRINTLN(x)
      #endif
      
      
      #define MY_RADIO_NRF24
      #define RFID_HASH1 1
      #define RFID_HASH2 2
      #define RFID_HASH3 3
      //#define RFID       4
      //#define MY_NODE_ID 42
      #define BAUDR 115200
      #define MY_BAUD_RATE BAUDR
      
      #define MY_ENCRYPTION_SIMPLE_PASSWD "randomstring"
      
      // mysensors: Define this to use a software based SPI driver which allows more freedom in pin selection for the (supported) radio module.
      #define   MY_SOFTSPI
      // mysensors:  Soft SPI SCK pin.
      #define   MY_SOFT_SPI_SCK_PIN   (14)
      // mysensors:  Soft SPI MISO pin.
      #define   MY_SOFT_SPI_MISO_PIN   (16)
      // mysensors:  Soft SPI MOSI pin.
      #define   MY_SOFT_SPI_MOSI_PIN   (15)
      
      
      #include <SPI.h>        // RC522 Module uses SPI protocol
      #include <MFRC522.h>  // Library for Mifare RC522 Devices
      #include <MySensors.h>
      #include <MD5.h>
      
      
      
      #ifdef COMMON_ANODE
      #define LED_ON LOW
      #define LED_OFF HIGH
      #else
      #define LED_ON HIGH
      #define LED_OFF LOW
      #endif
      
      #define redLed 7    // Set Led Pins
      #define greenLed 6
      #define blueLed 5
      
      //#define relay 4     // Set Relay Pin
      #define wipeB 3     // Button pin for WipeMode
      
      bool programMode = false;  // initialize programming mode to false
      
      uint8_t successRead;    // Variable integer to keep if we have Successful Read from Reader
      
      byte storedCard[4];   // Stores an ID read from EEPROM
      byte readCard[4];   // Stores scanned ID read from RFID Module
      byte masterCard[4];   // Stores master card's ID read from EEPROM
      byte dumpedCard[4];
      static const uint8_t MAGIC = 168;
      // Create MFRC522 instance.
      /*
        #define SS_PINRC 10
        #define RST_PINRC 9*/
      #define SS_PINRC 4
      #define RST_PINRC 2
      MFRC522 mfrc522(SS_PINRC, RST_PINRC);
      
      
      
      
      ///////////////////////////////////////// Setup ///////////////////////////////////
      void setup() {
        //release spi for nrf24l01+
        pinMode(RST_PINRC, OUTPUT);
        digitalWrite(RST_PINRC, LOW);
        pinMode(SS_PINRC, OUTPUT);
        digitalWrite(SS_PINRC, LOW);
        //Protocol Configuration
        //Serial.begin(9600);  // Initialize serial communications with PC
        Serial.begin(BAUDR);  // Initialize serial communications with PC
        SPI.begin();           // MFRC522 Hardware uses SPI protocol
        mfrc522.PCD_Init();    // Initialize MFRC522 Hardware
      
        //Arduino Pin Configuration
        pinMode(redLed, OUTPUT);
        pinMode(greenLed, OUTPUT);
        pinMode(blueLed, OUTPUT);
        pinMode(wipeB, INPUT_PULLUP);   // Enable pin's pull up resistor
        digitalWrite(redLed, LED_OFF);  // Make sure led is off
        digitalWrite(greenLed, LED_OFF);  // Make sure led is off
        digitalWrite(blueLed, LED_OFF); // Make sure led is off
      
      
      
        //If you set Antenna Gain to Max it will increase reading distance but require a better power source than arduino itself
        //mfrc522.PCD_SetAntennaGain(mfrc522.RxGain_max);
      
        Serial.println(F("Access Control v2.0"));   // For debugging purposes
      #ifdef DEBUG_ON
        ShowReaderDetails();  // Show details of PCD - MFRC522 Card Reader details
        checkWipe();
      #endif
        // Check if master card defined, if not let user choose a master card
        // This also useful to just redefine the Master Card
        // You can keep other EEPROM records just write other than MAGIC to EEPROM address 1
        // EEPROM address 1 should hold magical number which is 'MAGIC'
        if (loadState(1) != MAGIC) {
      #ifdef DEBUG_ON
          DEBUG_PRINTLN(F("No Master Card Defined"));
          DEBUG_PRINTLN(F("Scan A PICC to Define as Master Card"));
          do {
            successRead = getID();            // sets successRead to 1 when we get read from reader otherwise 0
            digitalWrite(blueLed, LED_ON);    // Visualize Master Card need to be defined
            delay(200);
            digitalWrite(blueLed, LED_OFF);
            delay(200);
          }
          while (!successRead);                  // Program will not go further while you not get a successful read
          saveCard(2, readCard);
          saveState(0, 0);
          saveState(1, MAGIC);                  // Write to EEPROM we defined Master Card.
          DEBUG_PRINTLN(F("Master Card Defined"));
      #else
          Serial.println(F("SYSTEM HALTED: No Master Card."));
          // Visualize system is halted
          digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
          digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
          digitalWrite(redLed, LED_ON);   // Turn on red LED
          while (true); // do not go further
      #endif
        }
      
        DEBUG_PRINTLN(F("-------------------"));
      
        loadCard(2, masterCard);
      #ifdef DEBUG_ON
        dumpIDs();
      #endif
      
        randomSeed(analogRead(7));
      
        DEBUG_PRINTLN(F("-------------------"));
        DEBUG_PRINTLN(F("Everything is ready"));
        DEBUG_PRINTLN(F("Waiting PICCs to be scanned"));
      
      
      //  Serial.print("stack");
      //  Serial.println(freeMemory());
        cycleLeds();    // Everything ready lets give user some feedback by cycling leds
      }
      
      
      
      
      ///////////////////////////////////////// Mysensors presentation ///////////////////////////////////
      MyMessage MsgHash1(RFID_HASH1, V_TEXT);
      MyMessage MsgHash2(RFID_HASH2, V_TEXT);
      //MyMessage MsgLock(RFID, V_LOCK_STATUS);
      MyMessage MsgSALT(RFID_HASH3, V_TEXT);
      void presentation()
      {
        // Send the sketch version information to the gateway and Controller
        sendSketchInfo("RFID Sensor", "2.3");
      
        // Register all sensors to gw (they will be created as child devices)
        present(RFID_HASH1, S_INFO);
        present(RFID_HASH2, S_INFO);
        present(RFID_HASH3, S_INFO);
        // present(RFID, S_LOCK);
      }
      
      
      ///////////////////////////////////////// Main Loop ///////////////////////////////////
      void loop () {
      //  Serial.print("stack");
      //  Serial.println(freeMemory());
        do {
          successRead = getID();  // sets successRead to 1 when we get read from reader otherwise 0
          if (programMode) {
            cycleLeds();              // Program Mode cycles through Red Green Blue waiting to read a new card
          }
          else {
            normalModeOn();     // Normal mode, blue Power LED is on, all others are off
          }
        }
        while (!successRead);   //the program will not go further while you are not getting a successful read
        if (programMode) {
          if ( isMaster(readCard) ) { //When in program mode check First If master card scanned again to exit program mode
            /*
              DEBUG_PRINTLN(F("Master Card Scanned"));
              DEBUG_PRINTLN(F("Exiting Program Mode"));
              DEBUG_PRINTLN(F("-----------------------------"));
            */
            programMode = false;
            return;
          }
          else {
            if ( findID(readCard) ) { // If scanned card is known delete it
      
              DEBUG_PRINTLN(F("I know this PICC, removing..."));
      
              deleteID(readCard);
      
              DEBUG_PRINTLN("-----------------------------");
              DEBUG_PRINTLN(F("Scan a PICC to ADD or REMOVE to EEPROM"));
      
            }
            else {                    // If scanned card is not known add it
              DEBUG_PRINTLN(F("I do not know this PICC, adding..."));
              writeID(readCard);
      
              DEBUG_PRINTLN(F("-----------------------------"));
              DEBUG_PRINTLN(F("Scan a PICC to ADD or REMOVE to EEPROM"));
            }
          }
        }
        else {
          if ( isMaster(readCard)) {    // If scanned card's ID matches Master Card's ID - enter program mode
            programMode = true;
            /*
                  DEBUG_PRINTLN(F("Hello Master - Entered Program Mode"));
              #ifdef DEBUG_ON
                  dumpIDs();
              #endif
                  DEBUG_PRINTLN(F("Scan a PICC to ADD or REMOVE to EEPROM"));
                  DEBUG_PRINTLN(F("Scan Master Card again to Exit Program Mode"));
                  DEBUG_PRINTLN(F("-----------------------------"));
            */
          }
          else {
            if ( findID(readCard) ) { // If not, see if the card is in the EEPROM
      
              //  DEBUG_PRINTLN(F("Welcome, You shall pass"));
              granted();
      
            }
            else {      // If not, show that the ID was not valid
              //  DEBUG_PRINTLN(F("You shall not pass"));
              denied();
            }
      
          }
        }
      }
      
      /////////////////////////////////////////  Access Granted    ///////////////////////////////////
      //bool status = false;
      uint8_t deniedCount = 1;
      
      void granted () {
        digitalWrite(blueLed, LED_OFF);   // Turn off blue LED
        digitalWrite(redLed, LED_OFF);  // Turn off red LED
        digitalWrite(greenLed, LED_ON);   // Turn on green LED
        request(RFID_HASH3, V_TEXT);
        wait(5000);
        /*char answer[12] = "XXXYYYYYYYY";
          int16_t randNumber = random(100, 999);
          sprintf(answer, "%u", randNumber);
          byte_to_hexa(card, 4, answer + 3);
      
          unsigned char* hash = MD5::make_hash(answer);
          //generate the digest (hex encoding) of our hash
          char *md5str = MD5::make_digest(hash, 16);
          free(hash);
          //print it on our serial monitor
      
          //  DEBUG_PRINT("value:");
          //  DEBUG_PRINT(answer);
          //  DEBUG_PRINT(", hash:");
          //  DEBUG_PRINTLN(md5str);
      
          //mysensors
          send(MsgSALT.set(randNumber));
          send(MsgHash2.set(md5str + 15));
          md5str[15] = '\0';
          send(MsgHash1.set(md5str));
          //Give the Memory back to the System if you run the md5 Hash generation in a loop
          free(md5str);
          // send(MsgLock.set(status ? 0 : 1));
          // status = !status;
          delay(1000);            // Hold green LED on for a second
          deniedCount = 1;*/
      }
      
      
      ///////////////////////////////////////// Access Denied  ///////////////////////////////////
      void denied() {
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        digitalWrite(redLed, LED_ON);   // Turn on red LED
        //mysensors
        char answer[12] = "KO XXXXXXXX";
        byte_to_hexa(readCard, 4, answer + 3);
        //mysensors
        send(MsgHash1.set(answer));
        delay(1000 * deniedCount);
        deniedCount++;
      }
      
      
      ///////////////////////////////////////// Get PICC's UID ///////////////////////////////////
      uint8_t getID() {
        // Getting ready for Reading PICCs
        if ( ! mfrc522.PICC_IsNewCardPresent()) { //If a new PICC placed to RFID reader continue
          return 0;
        }
        if ( ! mfrc522.PICC_ReadCardSerial()) {   //Since a PICC placed get Serial and continue
          return 0;
        }
        // There are Mifare PICCs which have 4 byte or 7 byte UID care if you use 7 byte PICC
        // I think we should assume every PICC as they have 4 byte UID
        // Until we support 7 byte PICCs
        Serial.println(F("Scanned PICC's UID:"));
        for ( uint8_t i = 0; i < 4; i++) {  //
          readCard[i] = mfrc522.uid.uidByte[i];
          Serial.print(readCard[i], HEX);
        }
        Serial.println("");
        mfrc522.PICC_HaltA(); // Stop reading
        return 1;
      }
      
      void ShowReaderDetails() {
        // Get the MFRC522 software version
        byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
        Serial.print(F("MFRC522 Software Version: 0x"));
        Serial.print(v, HEX);
        if (v == 0x91)
          Serial.print(F(" = v1.0"));
        else if (v == 0x92)
          Serial.print(F(" = v2.0"));
        else
          Serial.print(F(" (unknown),probably a chinese clone?"));
        Serial.println("");
        // When 0x00 or 0xFF is returned, communication probably failed
        if ((v == 0x00) || (v == 0xFF)) {
          Serial.println(F("SYSTEM HALTED: Check connections."));
          // Visualize system is halted
          digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
          digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
          digitalWrite(redLed, LED_ON);   // Turn on red LED
          while (true); // do not go further
        }
      }
      
      ///////////////////////////////////////// Cycle Leds (Program Mode) ///////////////////////////////////
      void cycleLeds() {
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_ON);   // Make sure green LED is on
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        delay(200);
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        digitalWrite(blueLed, LED_ON);  // Make sure blue LED is on
        delay(200);
        digitalWrite(redLed, LED_ON);   // Make sure red LED is on
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        delay(200);
      }
      
      //////////////////////////////////////// Normal Mode Led  ///////////////////////////////////
      void normalModeOn () {
        digitalWrite(blueLed, LED_ON);  // Blue LED ON and ready to read card
        digitalWrite(redLed, LED_OFF);  // Make sure Red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure Green LED is off
      }
      
      //////////////////////////////////////// Read an ID from EEPROM //////////////////////////////
      void readID( uint8_t number ) {
        uint8_t start = (number * 4 ) + 2;    // Figure out starting position
        loadCard(start, storedCard);
      }
      
      ///////////////////////////////////////// Add ID to EEPROM   ///////////////////////////////////
      void writeID( byte a[] ) {
        if ( !findID( a ) ) {     // Before we write to the EEPROM, check to see if we have seen this card before!
          uint8_t num = loadState(0);     // Get the numer of used spaces, position 0 stores the number of ID cards
          uint8_t start = ( num * 4 ) + 6;  // Figure out where the next slot starts
          num++;                // Increment the counter by one
          saveState( 0, num );     // Write the new count to the counter
          saveCard(start, a);
          successWrite();
          Serial.println(F("Write Success"));
        }
        else {
          failedWrite();
          Serial.println(F("Write Failed!"));
        }
      }
      
      ///////////////////////////////////////// Remove ID from EEPROM   ///////////////////////////////////
      void deleteID( byte a[] ) {
        if ( !findID( a ) ) {     // Before we delete from the EEPROM, check to see if we have this card!
          failedWrite();      // If not
          Serial.println(F("Delete Failed!"));
        }
        else {
          uint8_t num = loadState(0);   // Get the numer of used spaces, position 0 stores the number of ID cards
          uint8_t slot;       // Figure out the slot number of the card
          uint8_t start;      // = ( num * 4 ) + 6; // Figure out where the next slot starts
          uint8_t looping;    // The number of times the loop repeats
          uint8_t j;
          uint8_t count = loadState(0); // Read the first Byte of EEPROM that stores number of cards
          slot = findIDSLOT( a );   // Figure out the slot number of the card to delete
          start = (slot * 4) + 2;
          looping = ((num - slot) * 4);
          num--;      // Decrement the counter by one
          saveState( 0, num );   // Write the new count to the counter
          for ( j = 0; j < looping; j++ ) {         // Loop the card shift times
            saveState( start + j, loadState(start + 4 + j));   // Shift the array values to 4 places earlier in the EEPROM
          }
      
          successDelete();
          Serial.println(F("Delete Success"));
        }
      }
      
      ///////////////////////////////////////// Check Bytes   ///////////////////////////////////
      bool checkTwo ( byte a[], byte b[] ) {
        for ( uint8_t k = 0; k < 4; k++ ) {   // Loop 4 times
          if ( a[k] != b[k] ) {     // IF a != b then false, because: one fails, all fail
            return false;
          }
        }
        return true;
      }
      
      ///////////////////////////////////////// Find Slot   ///////////////////////////////////
      uint8_t findIDSLOT( byte find[] ) {
        uint8_t count = loadState(0);       // Read the first Byte of EEPROM that
        for ( uint8_t i = 1; i <= count; i++ ) {    // Loop once for each EEPROM entry
          readID(i);                // Read an ID from EEPROM, it is stored in storedCard[4]
          if ( checkTwo( find, storedCard ) ) {   // Check to see if the storedCard read from EEPROM
            // is the same as the find[] ID card passed
            return i;         // The slot number of the card
          }
        }
      }
      
      ///////////////////////////////////////// Find ID From EEPROM   ///////////////////////////////////
      bool findID( byte find[] ) {
        uint8_t count = loadState(0);     // Read the first Byte of EEPROM that
        for ( uint8_t i = 1; i <= count; i++ ) {    // Loop once for each EEPROM entry
          readID(i);          // Read an ID from EEPROM, it is stored in storedCard[4]
          if ( checkTwo( find, storedCard ) )    // Check to see if the storedCard read from EEPROM
            return true;
        }
        return false;
      }
      
      ///////////////////////////////////////// Write Success to EEPROM   ///////////////////////////////////
      // Flashes the green LED 3 times to indicate a successful write to EEPROM
      void successWrite() {
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is on
        delay(200);
        digitalWrite(greenLed, LED_ON);   // Make sure green LED is on
        delay(200);
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        delay(200);
        digitalWrite(greenLed, LED_ON);   // Make sure green LED is on
        delay(200);
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        delay(200);
        digitalWrite(greenLed, LED_ON);   // Make sure green LED is on
        delay(200);
      }
      
      ///////////////////////////////////////// Write Failed to EEPROM   ///////////////////////////////////
      // Flashes the red LED 3 times to indicate a failed write to EEPROM
      void failedWrite() {
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        delay(200);
        digitalWrite(redLed, LED_ON);   // Make sure red LED is on
        delay(200);
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        delay(200);
        digitalWrite(redLed, LED_ON);   // Make sure red LED is on
        delay(200);
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        delay(200);
        digitalWrite(redLed, LED_ON);   // Make sure red LED is on
        delay(200);
      }
      
      ///////////////////////////////////////// Success Remove UID From EEPROM  ///////////////////////////////////
      // Flashes the blue LED 3 times to indicate a success delete to EEPROM
      void successDelete() {
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        digitalWrite(redLed, LED_OFF);  // Make sure red LED is off
        digitalWrite(greenLed, LED_OFF);  // Make sure green LED is off
        delay(200);
        digitalWrite(blueLed, LED_ON);  // Make sure blue LED is on
        delay(200);
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        delay(200);
        digitalWrite(blueLed, LED_ON);  // Make sure blue LED is on
        delay(200);
        digitalWrite(blueLed, LED_OFF);   // Make sure blue LED is off
        delay(200);
        digitalWrite(blueLed, LED_ON);  // Make sure blue LED is on
        delay(200);
      }
      
      ////////////////////// Check readCard IF is masterCard   ///////////////////////////////////
      // Check to see if the ID passed is the master programing card
      bool isMaster( byte test[] ) {
        return checkTwo(test, masterCard);
      }
      
      bool monitorWipeButton(uint32_t interval) {
        uint32_t now = (uint32_t)millis();
        while ((uint32_t)millis() - now < interval)  {
          // check on every half a second
          if (((uint32_t)millis() % 500) == 0) {
            if (digitalRead(wipeB) != LOW)
              return false;
          }
        }
        return true;
      }
      
      /* save a card (card is an array of 4) into eeprom starting from startPos
          0: count
          1: magic (MAGIC)
          2 - 5 : master
          n - (n+4): cards
      */
      void saveCard(uint8_t startPos, byte *card) {
        for ( uint8_t j = 0; j < 4; j++ ) {        // Loop 4 times
          saveState( startPos + j, card[j] );  // Write scanned PICC's UID to EEPROM, start from address 3
        }
      }
      
      void loadCard(uint8_t startPos, byte *card) {
        for ( uint8_t i = 0; i < 4; i++ )    // Read Card's UID from EEPROM
          card[i] = loadState(startPos + i);    // Write it to the card
      }
      #ifdef DEBUG_ON
      void dumpIDs() {
        if (loadState(1) != MAGIC) {
          Serial.println("Wrong Magic Number");
          return;
        }
        uint8_t start = 0;
        uint8_t num = loadState(0);
        Serial.print("ID Count:");
        Serial.print(num);
        Serial.println("");
      
        Serial.print("Master ID:");
        loadCard(2, dumpedCard);
        for (uint8_t i = 0; i < 4; i++)
          Serial.print(dumpedCard[i], HEX);
        Serial.println("");
        for (uint8_t card = 0; card < num; card++) {
          start = (card * 4 ) + 6;
          Serial.print("card ");
          Serial.print(card + 1);
          Serial.print(":");
          loadCard(start, dumpedCard);
          for (uint8_t i = 0; i < 4; i++)
            Serial.print(dumpedCard[i], HEX);
          Serial.println("");
        }
        Serial.println("=== END dump ===");
      }
      
      
      void checkWipe() {
        //Wipe Code - If the Button (wipeB) Pressed while setup run (powered on) it wipes EEPROM
        if (digitalRead(wipeB) == LOW) {  // when button pressed pin should get low, button connected to ground
          digitalWrite(redLed, LED_ON); // Red Led stays on to inform user we are going to wipe
          Serial.println(F("Wipe Button Pressed, you have 5sec"));
          bool buttonState = monitorWipeButton(5000); // Give user enough time to cancel operation
          if (buttonState == true && digitalRead(wipeB) == LOW) {    // If button still be pressed, wipe EEPROM
            Serial.println(F("Starting Wiping"));
            saveState(0, 0 );     // light wipe. only erase number
            saveState(1, 0);      // light wipe. only erase magic number
            Serial.println(F("EEPROM Successfully Wiped"));
            digitalWrite(redLed, LED_OFF);  // visualize a successful wipe
            delay(200);
            digitalWrite(redLed, LED_ON);
            delay(200);
            digitalWrite(redLed, LED_OFF);
            delay(200);
            digitalWrite(redLed, LED_ON);
            delay(200);
            digitalWrite(redLed, LED_OFF);
          }
          else {
            Serial.println(F("Wiping Cancelled")); // Show some feedback that the wipe button did not pressed for 5 seconds
            digitalWrite(redLed, LED_OFF);
          }
        }
      }
      #endif
      
      void byte_to_hexa(byte array[], unsigned int len, char buffer[])
      {
        for (unsigned int i = 0; i < len; i++)
        {
          byte nib1 = (array[i] >> 4) & 0x0F;
          byte nib2 = (array[i] >> 0) & 0x0F;
          buffer[i * 2 + 0] = nib1  < 0xA ? '0' + nib1  : 'A' + nib1  - 0xA;
          buffer[i * 2 + 1] = nib2  < 0xA ? '0' + nib2  : 'A' + nib2  - 0xA;
        }
        buffer[len * 2] = '\0';
      }
      
      void receive(const MyMessage &message)
      {
        if (message.type != V_TEXT)
          return;
        char* salt = message.getString();
        char answer[12] = "XXXYYYYYYYY";
        for (uint8_t i = 0; i < 4; i++)
          answer[i] = salt[i];
        byte_to_hexa(readCard, 4, answer + 3);
      
        unsigned char* hash = MD5::make_hash(answer);
        //generate the digest (hex encoding) of our hash
        char *md5str = MD5::make_digest(hash, 16);
        free(hash);
      
        //  DEBUG_PRINT("value:");
        //  DEBUG_PRINT(answer);
        //  DEBUG_PRINT(", hash:");
        //  DEBUG_PRINTLN(md5str);
        Serial.print("sel: ");
        Serial.println(message.getString());
        //mysensors
        send(MsgSALT.set(salt));
        send(MsgHash2.set(md5str + 15));
        md5str[15] = '\0';
        send(MsgHash1.set(md5str));
        //Give the Memory back to the System if you run the md5 Hash generation in a loop
        free(md5str);
        // send(MsgLock.set(status ? 0 : 1));
        // status = !status;
        //delay(1000);            // Hold green LED on for a second
        deniedCount = 1;
        // Serial.print("stack");
        // Serial.println(freeMemory());
      }
      /*
      //https://learn.adafruit.com/memories-of-an-arduino/measuring-free-memory
      #ifdef __arm__
      // should use uinstd.h to define sbrk but Due causes a conflict
      extern "C" char* sbrk(int incr);
      #else  // __ARM__
      extern char *__brkval;
      #endif  // __arm__
      
      int freeMemory() {
        char top;
      #ifdef __arm__
        return &top - reinterpret_cast<char*>(sbrk(0));
      #elif defined(CORE_TEENSY) || (ARDUINO > 103 && ARDUINO != 151)
        return &top - __brkval;
      #else  // __arm__
        return __brkval ? &top - __brkval : &top - __malloc_heap_start;
      #endif  // __arm__
      }
      */
      
      

      when you test it for the first time, dont forget to enable DEBUG_ON to register a master card

      posted in My Project
      Oniric
      Oniric
    • RE: NRF24l01+, EEPROM and shared SPI = brick module ?

      HEllo,

      i used this one : https://github.com/mysensors/MySensors/blob/master/examples/ClearEepromConfig/ClearEepromConfig.ino

      ok intersting what you said, isnt it a magic number somewhere on the eeprom at boot to make sure this doesnt happen ? (if i understand correclty what you said : if i wipe my eeprom with 0x0, it might be wrong cause at boot it will think I'm Node_0, my parent is Node_0...) ?

      it seems i used the right one tho, but not at the beginning, maybe it would explain the weird behavior i had issue to understand because at first i used my own made wiper and of course i put 0x0 ! which would explain the result using the rf24 library debug printer full of 0.

      thanks again 🙂

      posted in Development
      Oniric
      Oniric
    • RE: NRF24l01+, EEPROM and shared SPI = brick module ?

      so ... i'm completly lost ... i made several test.... nothing worked... i look through the rf24 library to get more debug from the module itself ...

      i found out the function: void RF24::printDetails ( void )

      i tried it several time on my "brick" nrf24 module ... it shows everything at 0 and got stuck on a send function (obviously).
      i even tried without the module plug ... same result (everything at 0)

      i cried a little, then tried the same code on the same arduino but with a new module ...
      i got a result

      19:42:05.014 -> STATUS		 = 0x0e RX_DR=0 TX_DS=0 MAX_RT=0 RX_P_NO=7 TX_FULL=0
      19:42:05.082 -> RX_ADDR_P0-1	 = 0x4141417852 0xc2c2c2c2c2
      19:42:05.115 -> RX_ADDR_P2-5	 = 0xc3 0xc4 0xc5 0xc6
      19:42:05.182 -> TX_ADDR		 = 0x4141417852
      19:42:05.182 -> RX_PW_P0-6	 = 0x20 0x00 0x00 0x00 0x00 0x00
      19:42:05.250 -> EN_AA		 = 0x3f
      19:42:05.250 -> EN_RXADDR	 = 0x03
      19:42:05.284 -> RF_CH		 = 0x4c
      19:42:05.284 -> RF_SETUP	 = 0x27
      19:42:05.318 -> CONFIG		 = 0x0e
      19:42:05.318 -> DYNPD/FEATURE	 = 0x00 0x00
      19:42:05.353 -> Data Rate	 = 250KBPS
      19:42:05.387 -> Model		 = nRF24L01+
      19:42:05.421 -> CRC Length	 = 16 bits
      19:42:05.421 -> PA Power	 = PA_MAX
      

      i then tried to replug my "brick" module ... and this time ... it works ... i'm lost ! lol
      anyway...

      in case someone got the same issue and want to try my "fix" (can't call it a fix, but work on 2 "brick" nrf24 module for mysterious reason).

      most of the code is useless (then send & Co) but i let it to make sure it initiate a send.

      
      
      // SimpleTx - the master or the transmitter
      
      #include <SPI.h>
      #include <nRF24L01.h>
      #include <RF24.h>
      
      #define FAILURE_HANDLING
      #define CE_PIN   9
      #define CSN_PIN 10
      
      const byte slaveAddress[5] = {'R','x','A','A','A'};
      
      
      RF24 radio(CE_PIN, CSN_PIN); // Create a Radio
      
      char dataToSend[10] = "Message 0";
      char txNum = '0';
      
      
      unsigned long currentMillis;
      unsigned long prevMillis;
      unsigned long txIntervalMillis = 1000; // send once per second
      
      
      static FILE uartout = {0} ;
      void setup() {
      
          Serial.begin(9600);
      
          Serial.println("SimpleTx Starting");
      // fill in the UART file descriptor with pointer to writer.
         fdev_setup_stream (&uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE);
      
         // The uart is the standard output device STDOUT.
         stdout = &uartout ;
          radio.begin();
          radio.setDataRate( RF24_250KBPS );
          radio.setRetries(3,5); // delay, count
          radio.openWritingPipe(slaveAddress);
          
      }
      
      //====================
      bool printed = false;
      void loop() {
          currentMillis = millis();
          if (currentMillis - prevMillis >= txIntervalMillis) {
              send();
              prevMillis = millis();
          }
      
          if (!printed){
            printed=!printed;
            radio.printDetails();
            Serial.println("ok");
          }
          
      }
      
      //====================
      
      void send() {
      
          bool rslt;
          rslt = radio.write( &dataToSend, sizeof(dataToSend) );
              // Always use sizeof() as it gives the size as the number of bytes.
              // For example if dataToSend was an int sizeof() would correctly return 2
      
          Serial.print("Data Sent ");
          Serial.print(dataToSend);
          if (rslt) {
              Serial.println("  Acknowledge received");
              updateMessage();
          }
          else {
              Serial.println("  Tx failed");
          }
      }
      
      //================
      
      void updateMessage() {
              // so you can see that new data is being sent
          txNum += 1;
          if (txNum > '9') {
              txNum = '0';
          }
          dataToSend[8] = txNum;
      }
      
      
      // create a output function
      // This works because Serial.write, although of
      // type virtual, already exists.
      static int uart_putchar (char c, FILE *stream)
      {
          Serial.write(c) ;
          return 0 ;
      }
      

      and after i tried this mysensor code that failed before (with a working gateway) and worked after the code above... :

      /**
       * The MySensors Arduino library handles the wireless radio link and protocol
       * between your home built sensors/actuators and HA controller of choice.
       * The sensors forms a self healing radio network with optional repeaters. Each
       * repeater and gateway builds a routing tables in EEPROM which keeps track of the
       * network topology allowing messages to be routed to nodes.
       *
       * Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
       * Copyright (C) 2013-2015 Sensnology AB
       * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors
       *
       * Documentation: http://www.mysensors.org
       * Support Forum: http://forum.mysensors.org
       *
       * This program is free software; you can redistribute it and/or
       * modify it under the terms of the GNU General Public License
       * version 2 as published by the Free Software Foundation.
       *
       *******************************
       *
       * REVISION HISTORY
       * Version 1.0 - Henrik Ekblad
       *
       * DESCRIPTION
       * Motion Sensor example using HC-SR501
       * http://www.mysensors.org/build/motion
       *
       */
      
      // Enable debug prints
      #define MY_DEBUG
      
      // Enable and select radio type attached
      #define MY_RADIO_NRF24
      
      
      #include <MySensors.h>
      
      uint32_t SLEEP_TIME = 5000; // Sleep time between reports (in milliseconds)
      #define CHILD_ID 1   // Id of the sensor child
      
      // Initialize motion message
      MyMessage msg(CHILD_ID, V_TRIPPED);
      
      void setup()
      {
      	
      }
      
      void presentation()
      {
      	// Send the sketch version information to the gateway and Controller
      	sendSketchInfo("basic test", "1.0");
      
      	// Register all sensors to gw (they will be created as child devices)
      	present(CHILD_ID, S_MOTION);
      }
      bool tripped = true;
      void loop()
      {
      	send(msg.set(tripped?"1":"0"));  // Send tripped value to gw
        tripped=!tripped;
      	delay(SLEEP_TIME);
      }
      

      thanks again @rejoe2

      hope this will help someone, or if someone can explain to me the "magic" behind this ?

      posted in Development
      Oniric
      Oniric
    • RE: NRF24l01+, EEPROM and shared SPI = brick module ?

      well ...

      i just tried to use the dedicated flash eeprom sketch ... and nothing changed 😞
      i also tried to plug the nrf24l01 module to another arduino with a basic sketch... it fails init ...

      is there another way to directly hard reset the nrf24 module ? or did i really brick it ? ... i'm scared to try my main sketch again, because if it doesnt come from eeprom wrong usage, i'm screwed ! 😱 )

      does a wrong manipulation of eeprom can brick a nrf24 module ?

      posted in Development
      Oniric
      Oniric
    • RE: NRF24l01+, EEPROM and shared SPI = brick module ?

      @rejoe2 thanks ! i didnt see there was a specific sketch for it...
      i will try this tonight. concerning the I_DEBUG, just for my understanding, if i put the define with "E", it will automatically clear some setting in the eeprom so it's less invasive than the dedicated clear sketch. did i understand it right ?

      thanks a lot, it make me crazy for 2 days, but at least i found out some new features on mysensors 😉

      posted in Development
      Oniric
      Oniric
    • NRF24l01+, EEPROM and shared SPI = brick module ?

      Hello Everyone,

      i'm currently working on building a new module using an RFID module + NRF24L01+ using mysensors.

      for my RFID module, i'm using the EEPROM to store card ID and mysensors to communicate to my jeedom who came home etc.
      both devices work with SPI that i manage to share (did I ?).
      in the EEPROM i store some data from 0 to 20 (5cards) using the EEPROM library (read/write)

      my code is based on this example with addition of mysensors and some minor correction and simplification (i will share it later if that could help)
      https://github.com/miguelbalboa/rfid/tree/master/examples/AccessControl

      and i got a weird behavior:

      • when i plugged the device the first time, everything work fine but the master card as been forgotten, so i got to store it again in the eeprom (write 5 byte from 0) but otherwise enverything work fine on mysensors side or rfid

      • when i unplggued and plugged again a second time, same behavior (that's when i started to feel something was off 😅 )

      • and when i do it again... this time, the mysensors library refuse to start (init fail in loop ...).

      to make sure i didnt brick my code (cause i change some minor thing between each plugged), i changed the nrf module, and it start to work again but same exact behavior : 3 power on/off and no more mysensors init ...

      with this behavior, i started some research on internet and find out that mysensors is also using the eeprom to store some information ... first fail ! i then tried to wipe the eeprom with a simple write 0 everywhere. but it didnt work .. my nrf modules are still brick ...

      i found into config.h this information:

      /**
       * @def MY_SPECIAL_DEBUG
       * @brief Define MY_SPECIAL_DEBUG to enable support for I_DEBUG messages.
       *
       * I_DEBUG messages are sent from the controller to the node, which responds with the requested
       * data. The request can be one of the following:
       * - 'R': routing info (only repeaters): received msg XXYY (as stream), where XX is the node and YY
       *   the routing node
       * - 'V': CPU voltage
       * - 'F': CPU frequency
       * - 'M': free memory
       * - 'E': clear MySensors EEPROM area and reboot (i.e. "factory" reset)
       */
      //#define MY_SPECIAL_DEBUG
      

      if i want to make sure to clear the eeprom for mysensors, i should put #define MY_SPECIAL_DEBUG 'E' and/or 'M' onto my node ? i dont understand the "I_DEBUG messages are sent from the controller to the node, which responds with the requested" ?
      i dont think it will fix my issue, but it worse the try.

      to correct my code i will try to use :
      Saving state
      You can save a state (in local EEPROM) which is good for actuators to "remember" state between power cycles. You have 256 bytes to play with. Note that there is a limitation on the number of writes the EEPROM can handle (~100 000 cycles).

      void saveState(uint8_t pos, uint8_t value);
      pos - The position to store value in (0-255)
      value - Value to store in position

      Retrieving a state (from local EEPROM).
      uint8_t loadState(uint8_t pos);
      pos - The position to fetch from EEPROM (0-255)

      is it really to save custom value ? i don't understand why we talk about "state". i don't want to brick a new one ! 😖

      finally my real questions:

      • does it already happen to you this kind of behavior ? and how did you fixed it ? perhaps i'm missleading myself with eeprom. Maybe the shared SPI is the issue ?
      • is using saveState/loadstate is the correct way to use eeprom when using mysensors ?
      • is there a way to hard reset a nrf24 module ? i cant believe the nrf module is completly brick since voltage is stable and it's not 3 plug/unplgged that will brick them ...

      thanks a lot for your help and the great work on mysensors 🙂

      posted in Development
      Oniric
      Oniric