Air Quality Sensor
-
Hello all,
I'm new here, thanks to this topic very interesting for my personal project: a mobile air quality sensor.
(sorry for my english, i'm french)Fistly, congrat's @epierre and the other, for having shared all this informations!
(it's a litte funny because we had the same idea in the almost same time)
So after having read the entire subject, here my questions (the number in front is the number post):_
17 - @epierre, I haven't well understand How you can distinguish individual gas from a sensor who react with several gas.45 - The "Wunder Weather" list that you talked about, it's a website?
55 - What David did you answer to you about "if he speaks of the organic sensor or the ceramic ones"?
Moreover, what are the organic sensors? Have you example?72- On winsensor.com, an chinese gas sensor producer, the MQ-7 is more powerfull... I don't know who trust, maybe it's not the same?? See the PDF datasheet here.
81 - Where did you read that the lastest one don't speak of HCHO anymore?
After some research, I founded two, one who speak about HCHO here in english , and the other who don't....but I'm not sure (beacause in chinese) here.Otherwise, for the WSP2110 datasheet, it is here! But chinese too =/
Regards,
Alex. -
Hello,
This is a short post, half has been lost in a forum crash, I hope the best remains ;-)
17 - @epierre, I haven't well understand How you can distinguish individual gas from a sensor who react with several gas.You cannot as I showed below with the broken perfume bottle, you can guess there is one, but not which one.
45 - The "Wunder Weather" list that you talked about, it's a website?This is wunderground.com
55 - What David did you answer to you about "if he speaks of the organic sensor or the ceramic ones"? Moreover, what are the organic sensors? Have you example?The organic are the one that have a lifetime of 2 years, calibrated but wery expensive (aroung $150+ apiece), the winseng one for example, big and round.
72- On winsensor.com, an chinese gas sensor producer, the MQ-7 is more powerfull... I don't know who trust, maybe it's not the same?? See the PDF datasheet here.this is hard to say... the MQ-7 is quite special with a sequence to power it up, and readings every period.
81 - Where did you read that the lastest one don't speak of HCHO anymore? After some research, I found two, one who speak about HCHO here in english , and the other who don't....but I'm not sure (beacause in chinese) here.I don't see mention of HCHO (formaldehyde) in the english one (n-Hexane, Benzene, NH3, alcohol, ,smoke, CO. I found one in chinese with the link above but the curve couldn't be exploited. Please remark that Alcohool has not a single formula, but here they show only one curve, not very precise.
Otherwise, for the WSP2110 datasheet, it is here! But chinese too =/Yes for this one something can be done, but there is no for WSP1110 there is no...
-
Hello
@epierre : after received the PPD42NS, compared to the DSM501A, which one is the best do you think?
Other things, I planned to purchase soon the sensors that I need for my air station.
You made a list on the #1 post, and it's very useful thanks, but now I have to choose between them for each gas targeted (maybe some sensors are still missing on the list below)Which one appears for you, the better for each gas, with a reasonable price?
O3 MQ131 MICS-2610 Mics-2614 NO2 MiCS-2710 MiCS-2714 NO ? PM10 PM2.5 PPD42NS SamYoung DSM501 Benzene MQ135 CO MQ307A MQ309A AQ-7 MiCS-5525 TGS2442 So2 MQ136 COV MQ135 TGS2602 CO2 MQ135 -
Hello
@epierre : after received the PPD42NS, compared to the DSM501A, which one is the best do you think?
Other things, I planned to purchase soon the sensors that I need for my air station.
You made a list on the #1 post, and it's very useful thanks, but now I have to choose between them for each gas targeted (maybe some sensors are still missing on the list below)Which one appears for you, the better for each gas, with a reasonable price?
O3 MQ131 MICS-2610 Mics-2614 NO2 MiCS-2710 MiCS-2714 NO ? PM10 PM2.5 PPD42NS SamYoung DSM501 Benzene MQ135 CO MQ307A MQ309A AQ-7 MiCS-5525 TGS2442 So2 MQ136 COV MQ135 TGS2602 CO2 MQ135@alex said:
@epierre : after received the PPD42NS, compared to the DSM501A, which one is the best do you think?
I currently have only the DSL501A working, many issues with the dead Shinyei (still in dispute escalade) and getting one from another seller takes so much time...
Which one appears for you, the better for each gas, with a reasonable price?
O3 MQ131 MICS-2610 Mics-2614
NO2 MiCS-2710 MiCS-2714
NO ?
PM10 PM2.5 PPD42NS SamYoung DSM501
Benzene MQ135
CO MQ307A MQ309A AQ-7 MiCS-5525 TGS2442
So2 MQ136
COV MQ135 TGS2602
CO2 MQ135The price is low, but so is the result. Only the CO-MH-Z14 is calibrated. For all the others, there is the calibration issue.
See the sketch for a lit of known/tested sensors (some I don't have but a frien asked me for the curves so I added it to the Mega sketch)
https://github.com/empierre/arduino/blob/master/AirQuality-Multiple_Gas_Sensor1_4.ino- The MiCS are problematic to find in Europe (!) so I have only one that I have not yet tested.
- The Figaro have been tested, but it is hard to know how to really test them on some gases...
- The MQxx:
- MQ2: good result on smoke
- MQ135 good result on CO2
The others I'm not yet able to give any opinion.
-
Great project!
I hooked up an MQ135 (sensor on a little pcb with (i think) smd resistor 102 (=1K ohm) between gnd and B )
The readings are however all over the place (135ppm to 1332ppm), so i think i need to calibrate. The raw reading is alwas in the range 71-80 (inside).I know i have to get it outside and the reading should be 392 or 399 ppm but i am unsure what var i should change?
The sketch says mq135_ro (this has to be tuned 10K Ohm) but that does not seem to be used in the calculations?I tried the sensor outside, but I am getting some different readings: the measured value changes from 59 to 82. The mq135_ro (i suppose that's the suggested ro) from 3081.00 to 81416 (does not go linear with the measured value?
The sensor was heated for more than 24h and then moved outside (started measuring after 5min, in windy conditions) -
I take it that you are talking about the Air_Quality sketch right? The problem is that you do not have the device files for this kind of sensor in your Vera MySensor plugin. There is another thread that contains the files, I'll see if I can find it.
Edit: Found the thread -> http://forum.mysensors.org/topic/661/assistance-needed-completing-gas-air-quality-sensor
-
I take it that you are talking about the Air_Quality sketch right? The problem is that you do not have the device files for this kind of sensor in your Vera MySensor plugin. There is another thread that contains the files, I'll see if I can find it.
Edit: Found the thread -> http://forum.mysensors.org/topic/661/assistance-needed-completing-gas-air-quality-sensor
-
Air Quality Index is a combination of several sensors values:
- sulfur dioxide (SO2) MQ136 / (avoid:2SH12 no datasheet)
- nitrogen dioxide (NO2) MiCS-2710 MiCS-2714 MICS-6814
- carbon monoxide (CO) MQ-7 MiCS-5525 TGS2442 MICS-6814
- ozone (O3) MQ131 MICS-2610 MICS-2614
- Particles concentration: PM2.5 and PM10 (SamYoung DSM501, Shinyei_PPD42NS, avoid: Sharp_GP2Y1010AU)
Additional gases can be interesting to track:
Current work being done:
- manage default Ro once
- take into account humidity
- manage to get proper values from TGS2600
- possibility to have a push if a value goes up too quick (for deadly gases even without calibration)
What is done:
- remove powerdown to keep heaters on
- add a five minute pre-heat on each startup
- removed the powerdown
- 2SH12 datasheet doesn't exist
WARNING: all sensors differs even within the same reference, a calibration has to be done each time. Do not rely upon a sketch result with deadly gases.
Working sketch in 1.4/1.5:
- https://github.com/empierre/arduino/blob/master/MQv01dgi_1_4.ino (for a Mega, MQ2, MQ6, MQ131, MQ136, MQ138, TGS2600, TGS2602, HCHO, Barometer BMP085, DHT11)
- https://github.com/empierre/arduino/blob/master/AirQuality-CO-NO2-NH3.ino for MICS-6814
- https://github.com/empierre/arduino/blob/master/CO2-MH-Z14.ino
- https://github.com/empierre/arduino/blob/master/DustSensor_SamYoung_DSM501.ino
- https://github.com/empierre/arduino/blob/master/DustSensor_Shinyei_PPD42NS.ino
@epierre thank you for sharing this code - your work is stellar. I'm working with a team of three other people to build a payload for a near space weather balloon launch in a couple of weeks.
We're using the MQ131 Ozone Gas Sensor and your code has been quite useful to us. One question though, when our data logger reads the sensor we're getting a single number value. We're not exactly sure what that number means. Could you help explain what we're seeing? Are we getting a ppb number? ppm? Or something else altogether?
-
@jroseastro hello, first of all the MQ series are not so precise as that, use it for a test run, but for serious purpose please consider something better and with calibration.
Ozone is quite chalenging, if you go very high, since the MQ nead heating to work, it will drain fast your batteries.
For any sensor always refer to the datasheet.
MQ131 is given from 5 to 100 ppb (reason you get only a single value) if you use the provided calibration sheet. So the result is the one from the curve. We've had a discussion not yet settled with @hek about units and this is why I've not put it, but maybe I should uniformize everything in ppm since this is the most prevalent value used.
Also the datasheet says you need 6V to heat it, so you cannot heat it from the arduino except with a step up (not that good) or an external power source (best) with a voltage regulator.
-
I'm now testing the MICS-6814 (3 sensors in one) given for :
Carbon monoxide CO 1 -1000ppm
**Nitrogen dioxide NO2 0.05 –10ppm **
Ethanol C2H5OH 10 –500ppm
Hydrogen H2 1 –1000ppm
Ammonia NH3 1 –500ppm
Methane CH4 >1000ppm
Propane C3H8 >1000ppm
Iso-butane C4H10 >1000ppmDatasheet maionly speaks on CO, NO2 and NH3:
http://www.seeedstudio.com/wiki/images/1/10/MiCS-6814_Datasheet.pdfHere is are scripts:
http://www.seeedstudio.com/wiki/Grove_-_Multichannel_Gas_Sensorhttp://www.seeedstudio.com/wiki/images/1/10/MiCS-6814_Datasheet.pdf
Some readings:
The concentration of NH3 is 0.99 ppm The concentration of CO is 1.20 ppm The concentration of NO2 is 0.15 ppm The concentration of C3H8 is 1000.04 ppm The concentration of C4H10 is 999.98 ppm The concentration of CH4 is 2991.14 ppm The concentration of H2 is 1.09 ppm The concentration of C2H5OH is 1.40 ppmI guess I'll make a script soon...
-
I think MQ131 need 24 hours preheating time.Because of preheating time it will be costly. and for MiCS 6814 how do you calculate or measured other values of gases?? Because sensor's data sheet it hard to understand
@bhavika said:
I think MQ131 need 24 hours preheating time.Because of preheating time it will be costly.
no MQ is expected to run on battery for they always need pre-heating before getting a value.
and for MiCS 6814 how do you calculate or measured other values of gases?? Because sensor's data sheet it hard to understand
So fat I only use the provided library. Sensors are said to be factory calibrated, maybe a reason they are so costly. I'm not running it constantly at this time, but I saw no change in the few time I ran it so I'm still expecting to see something.
-
@bhavika said:
I think MQ131 need 24 hours preheating time.Because of preheating time it will be costly.
no MQ is expected to run on battery for they always need pre-heating before getting a value.
and for MiCS 6814 how do you calculate or measured other values of gases?? Because sensor's data sheet it hard to understand
So fat I only use the provided library. Sensors are said to be factory calibrated, maybe a reason they are so costly. I'm not running it constantly at this time, but I saw no change in the few time I ran it so I'm still expecting to see something.
@epierre Hi...it is ameasing your work :D
I am wondering about Mq-135. We have troubles with reading differents gases.
From the datasheet we read the slopes
Gas X" X0" "Rs/R0 "Rs/R0 pendiente (log y- log y0)/(log x-log x0)"
Air 200 10 3.6 3.6 0.00000
co 200 10 1.3 2.9 -0.26783
nh4 200 10 0.79 2.7 -0.41024
c02 200 10 0.8 2.4 -0.36673
3/4/ 200 10 0.72 1.9 -0.32391
1/4/ 200 10 0.64 1.5 -0.28432
+- 200 10 0.59 1.4 -0.28845the data are in the next worksheet https://docs.google.com/spreadsheets/d/18Z6XyxwXVsWdMIk9vbUuCucaLJDdmR0QUFSTYG79ftw/edit?usp=sharing
¿may you share with us your code for this sensor in order to see your slopes and Rs/R0 values ?
¿do you know the meaning of the name of gases with 3/4 or 1/4 or +-thank you in advance
-
based on a datasheet, this one:
https://drive.google.com/file/d/0B8OvrwVDp8fCcWpHSjZNVzB1TjQ/viewI apply a power regression (tool: http://www.xuru.org/rt/PowR.as ) on the following points (I've not marked down values but theses are close match):
0.8 200 1 100 2.3 10Result: y = 103.6748512 x-2.81699418
Residual Sum of Squares: rss = 45.01031346¿do you know the meaning of the name of gases with 3/4 or 1/4 or +-looks like you had a chinese datasheet ;-) just remember those are correlated gases based on particle size for those captors, so it is not very accurate...
You can find many more sensors hare : https://github.com/empierre/arduino/blob/master/AirQuality-Multiple_Gas_Sensor1_4.ino or simply in https://github.com/empierre/arduino/blob/master/
-
based on a datasheet, this one:
https://drive.google.com/file/d/0B8OvrwVDp8fCcWpHSjZNVzB1TjQ/viewI apply a power regression (tool: http://www.xuru.org/rt/PowR.as ) on the following points (I've not marked down values but theses are close match):
0.8 200 1 100 2.3 10Result: y = 103.6748512 x-2.81699418
Residual Sum of Squares: rss = 45.01031346¿do you know the meaning of the name of gases with 3/4 or 1/4 or +-looks like you had a chinese datasheet ;-) just remember those are correlated gases based on particle size for those captors, so it is not very accurate...
You can find many more sensors hare : https://github.com/empierre/arduino/blob/master/AirQuality-Multiple_Gas_Sensor1_4.ino or simply in https://github.com/empierre/arduino/blob/master/
@epierre
Hi, May be I do not explain my point correctly (or maybe I misundertood ), let me try again.
We adopt a code, which is the next. The blue lines are the points (for each gas we need two points) that we need.
https://docs.google.com/document/d/1CevnhBLL9uoyZ31kkrMn-SXeOF_4e9YFGmchj46pGPY/edit?usp=sharingSpecifically we read from the datasheet the pairs of points for CO
point1 (lg200 , lg1.3)
Point2 (lg10, lg2.9)
then, we construct the data format:{ x, y, slope};
COCurve[3] = {1.0,0.462,-0.268};We are wondering about the pair of points for the others gases or the { x, y, slope} data for them, could you share them?.
and the other hand, the name of gases with 3/4 or 1/4 or +- appears as well in your datasheet (figure 3)... do you know why?
thank you so much
-
I prefer the power regression than the curves.
From your datapoints :
1.3 200
2.9 10I find:
y = 532.6744764 x-3.73371402
rss=0I don't remember where I found the datasheet with the chinese names that I translated through google.
-
I prefer the power regression than the curves.
From your datapoints :
1.3 200
2.9 10I find:
y = 532.6744764 x-3.73371402
rss=0I don't remember where I found the datasheet with the chinese names that I translated through google.
@epierre Now I see your point of view and of course it is better way to reduce the error.
in the other hand, I found the datasheet in chinese an then a friend translate it.
the meaning of the name of gases is for 3/4 (Alcohol), 1/4 (Tolueno) or +- (acetona)Thank you so much.
