I need advice with brainstorming my farm project



  • Hi, I've been reading through the forum and website and what a great community and fantastic projects!

    I'm a farmer and electronics hobbyist. I've built several Arduino projects to help me run the farm, including automation of our greenhouse, hothouse, orchards irrigation and weather station. It's all great but it's time to integrate everything... It's too many odd projects and they do not talk with each other. I'm so excited when I found the mysensors.org site.

    Thus I have reasonable Arduino experience, but limited Raspberry experience.

    Hardware I have:
    Aduino: Mega's, Uno's, Nano's, NodeMCU's, Pro Mini's
    Raspberry: Pi B+, Pi A+, Pi 2 Model B
    Plenty of sensors etc.

    I need some guidance, advice or tips please!

    My goal is to turn all my existing projects into nodes. This I will be fine with. I will add NRF24L01 for all the nodes.
    But the rest is new territory...

    Do I understand it correct that I need a gateway / controller (Raspberry) with NRF24L01 and then my nodes will all talk with the Raspberry?

    Which Raspberry model will be best to use?
    Which Controller platform is the best to use for my function?

    Any guidance will be appreciated please!

    Kind Regards,
    Peter


  • Hardware Contributor

    Hi @peterrr and welcome!

    @peterrr said in I need advice with brainstorming my farm project:

    I will add NRF24L01 for all the nodes

    If you have a greater distance to cover, have a look at the RFM modules as well...

    Have a look at https://www.mysensors.org/about and go trough the tutorial there. You need a controller of some kind to which you connect a gateway (or if a raspberry you can do both controller and gateway in one). The rest of the nodes talk to the radio (gw) which hands over the message to the controller.

    Which Raspberry model will be best to use?

    Dont know, sorry - I think they all work? Im using 2 and 3 for controllers but have a own GW on a Nano Arduino.

    Which Controller platform is the best to use for my function?

    You have to check them out and see for yourself. All controllers have different things to offer.



  • @sundberg84 said in I need advice with brainstorming my farm project:

    Hi @peterrr and welcome!

    @peterrr said in I need advice with brainstorming my farm project:

    I will add NRF24L01 for all the nodes

    If you have a greater distance to cover, have a look at the RFM modules as well...

    Have a look at https://www.mysensors.org/about and go trough the tutorial there. You need a controller of some kind to which you connect a gateway (or if a raspberry you can do both controller and gateway in one). The rest of the nodes talk to the radio (gw) which hands over the message to the controller.

    Which Raspberry model will be best to use?

    Dont know, sorry - I think they all work? Im using 2 and 3 for controllers but have a own GW on a Nano Arduino.

    Which Controller platform is the best to use for my function?

    You have to check them out and see for yourself. All controllers have different things to offer.

    Great advice, thanks!

    Transceivers:

    Regarding transceivers, yes you are right I will need more distance. The RFM69W and RFM69HW look like excellent options.

    RFM69W
    Transmit power = +13dB
    Receive sensitivity = -120dB
    current consumption transmit = 45mA @ 13dB
    Temperature: -40 to 85 C (-40 to 180F)

    RFM69HW
    Transmit power = +20dB
    Receive sensitivity = -120dB
    current consumption = 130mA @ 20dB
    Temperature: -20 to 70 C (-4 to 158F)

    nRF24L01+ (No power amplifier)
    Transmit power = 0dB?
    Receive sensitivity = -82dBm @ 2Mbps, -104dBm @250kbps
    current consumption = 13mA @ 0dB
    Temperature: -20 to 70 C (-4 to 158F)

    nRF24L01+ w/ PA+LNA and Antenna
    Transmit power = 20dB
    Receive sensitivity = -82dBm @ 2Mbps, -104dBm @250kbps
    current consumption = 130mA @ 20dB
    Temperature: -20 to 70 C (-4 to 158F)

    Gateway / Controller:

    Is it better to have a separate gateway and controller? Or have one device doing both? Mostly in terms of what would be most reliable and easy to maintain...
    I already have hardware for Raspberry Pi or Arduino options...

    Controller platform

    I had a look at the various controllers, and I suppose some of the best options might be between Domoticz, MyController.org and OpenHAB. But I really have no clue. I guess the question is for someone who has tried various controllers, imagine you had a small organic farm, what will you go with?


  • Hardware Contributor

    @peterrr i would choose most based on the actuator and timers/programmable. I think all controllers can handle incoming sensor data but to time actuator and be sure everyone works is more tricky.

    Do you need mean to use irrigation for example?

    I have never used a raspberry for both gw and controller so can't help you.


  • Hero Member

    I would imagine that on a farm you'd be better off with LoRa nodes. Without getting exotic, they have the most range. It used to be very expensive, but the Ra-01 changed all that:
    https://www.openhardware.io/view/395/LoRa-Ra-01-ATmega328P-Node



  • @NeverDie said in I need advice with brainstorming my farm project:

    I would imagine that on a farm you'd be better off with LoRa nodes. Without getting exotic, they have the most range.

    Thanks for the reply!

    I was looking at LoRaWAN, amazing range and reasonably low power consumption for what you get. It's a small farm and the maximum distance from node will be approximately 1000m... thus 'nRF24L01+ w/ PA+LNA and Antenna' or 'RFM69HW' could be sufficient?

    In terms of LoRaWAN, I have not seen many projects and examples on MySensors, thus I was slightly put off. Or maybe I'm missing something?

    Your info on LoRa node is fantastic.
    My I ask what your setup is in terms of nodes, transceivers, controller, gateway etc?


  • Hero Member

    @peterrr
    Most people here aren't bridging 1000m distances, but probably some are. If you have line of sight, maybe (?) an amplified nRF24 will work for you.



  • @NeverDie The penalty of higher amplification electrically is power consumption, gain is also a function of antenna type and directivity.
    Farms are rarely in an urban area likely to cause interference. Even low power uhf on a dipole should link 1km, but for certain a colinear or small yagi should transceive no problem without the penalty imposed of slower data rate on Lora, or the consumption issues of higher power....
    Worth considering I suggest....


  • Hero Member

    @zboblamont said in I need advice with brainstorming my farm project:

    for certain a colinear or small yagi should transceive no problem

    Exactly which antenna (links?) do you recommend he buy?



  • @NeverDie Sorry, as an old time Ham I always built my own antennae except for FM mobile, radio hams had 430 - 440MHz in their allocation, so there is a wealth of info out their on options, if indeed that is frequency selected.
    For simplicity, a dipole with a sheet reflector behind it will punch a lobe toward it's target pretty effectively. Last Yagi I built was a ZL type for 145MHz, cost about $20 in alloy, put it together in a week, 16dB gain... If you can solder SMD components, antenna building is pretty basic really...



  • @NeverDie Sorry, forgot to add, don't ignore quad antennae when considering beams, they are much simpler to build than yagi, fairly wideband, all you need do is consider polarisation. A lump of 2x2 cedar, some cross drilled dowels, copper tube or alloy bar for elements, the hardest part is making the bazooka balun and waterproofing it really... Last one I built was a 3 to 1 elliptical which design theory some Japanese guys came up with, pretty amazing performance compared to it's quad original....


  • Hero Member

    @zboblamont
    Well, all this sounds great, but fairly exotic.



  • @NeverDie I suggest some use of Google may dispel any misunderstandings you may hold, it is far from exotic. Most of what is known today is based on professional and amateur experimentation over many decades, little of it is exotic perhaps refined but not beyond anyone with a basic understanding of what is required, it couldn't be else amateurs would be quite incapable of playing with copper and steel wires, aluminium rods, brass, even helium balloons to hoist antennae. R&D on frequencies and antennae preceded much of what is known today in terms of communications, and probably assisted it's progress. Most of antenna theory and development goes back over 100 years, in the supermarket mentality of modern days, the notion of bending a 6mm alloy rod to fulfill your requirements may seem abstract, but radio experimentation preceded your birth, I suggest you might take off the blinkers and look.... :)


  • Hero Member

    @zboblamont
    Yes, but not everyone wants to become a quantum mechanic, because for them the more interesting part comes in actually using it. If it's not exotic, it should be easy to buy pre-made.



  • @NeverDie Oh dear, quantum mechanics? Ok, you want to buy, fair enough, others including the OP might prefer to DIY, but fair enough, first hit on Google... http://www.sandpiperaerials.com/product/13-element-zl-special-yagi/



  • @NeverDie DIY, about 10...


  • Hero Member

    You see, this is where your argument falls apart. £74.80 for a Yagi (it's your link) versus around $2.50 for an Ra-01.



  • @NeverDie Not really, there is no argument to fall apart unless you are incapable of some DIY and can do a bit of research, the very foundation of this particular forum.
    I have never met a farmer yet who could not DIY, and even fewer who would shell out good money for a commercial product where they had bits kicking around the yard which could be re-purposed after a little research.
    A Slim-Jim colinear is easily made from some wire and a water pipe, a dipole and reflector from some fence wire and an old bit of tinplate, the sort of material kicking around the average farmyard at no cost at all but with enough gain to easily cover a km or two with an extremely low output power RF unit, sipping by on a couple of AAs.
    The commercial antenna I exampled would be a solution if you required that level of gain (14dBd) to cover long distances such as the ISS, but there are other cheaper antennae from that supplier, the J-pole for instance, 33 quid, but you could build it for 2.
    Each to their own, none of it is rocket science or 'quantum mechanics'...


  • Hero Member

    @zboblamont
    I see. And anyone can properly tune this DIY antenna you're proposing that's made from barnyard scrap without using a network analyzer, right?



  • @NeverDie Jeez, why so negative?
    Why would anybody want to use a network analyser for an antenna?

    If you meant a Grid Dip Oscillator, I made one many moons ago but never used it once. Go figure... Have used a SWR meter to tweak an antenna to 1:1, but usually found it was <1.5 as built which is fine.

    A dipole using straight wire is well documented on these forums and elsewhere, a plate wire or corner reflector spaced correctly forces the lobe in the intended direction with zero effect on SWR, hence making it higher gain, adding reflectors adds to that gain as it narrows the radiated lobe, simple well established science.
    1km should be easy enough on a dipole anyway with line of sight, a reflector or director simply boosts the gain with no hit on consumed power.

    There are a multitude of Ham origin DIY designs for the same band, the commercial J-pole I pointed to was a DIY design, the Slim-Jim a DIY variant on that (from memory a version using the coax only, the commercial ZL again a Ham DIY original, none of this is ground-breaking or difficult to research, but we are talking very long distances with such gain...


Log in to reply
 

Looks like your connection to MySensors Forum was lost, please wait while we try to reconnect.