Skip to content
  • MySensors
  • OpenHardware.io
  • Categories
  • Recent
  • Tags
  • Popular
Skins
  • Light
  • Brite
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • Default (No Skin)
  • No Skin
Collapse
Brand Logo
  1. Home
  2. My Project
  3. Solar Powered Mini-Weather Station

Solar Powered Mini-Weather Station

Scheduled Pinned Locked Moved My Project
111 Posts 39 Posters 119.3k Views 27 Watching
  • Oldest to Newest
  • Newest to Oldest
  • Most Votes
Reply
  • Reply as topic
Log in to reply
This topic has been deleted. Only users with topic management privileges can see it.
  • PetjepetP Offline
    PetjepetP Offline
    Petjepet
    wrote on last edited by Petjepet
    #91

    @gigi I know but in your breadboard picture the now mentioned V output is connected directly to ground. :smirk:

    0_1460012243066_Knipsel.JPG

    1 Reply Last reply
    0
    • gigiG Offline
      gigiG Offline
      gigi
      wrote on last edited by
      #92

      @Petjepet I Know, thank

      on board as I did your chart

      0_1460012626053_schema-pannello-solare-2_bb-2.jpg
      Thank

      Vera lite - mysensors Ethernet gateway - AirWik sensor - Relay Module

      1 Reply Last reply
      1
      • peerkersezuukerP Offline
        peerkersezuukerP Offline
        peerkersezuuker
        wrote on last edited by
        #93

        Back to the weather station.
        I was having problems reporting wind speed to domoticz (in hardware my sensor was listed, but there was no device creation)
        After a question on their forum, i learned tha i had to implement gust and direction to the sensor becaus Domoticz is aspectiong these to before it vreates a device.
        I had to remove the rainrate because the sketch was getting to big.
        Here is the latest sketch i am using :

        
        
        
            #include <SPI.h>
            #include <MySensor.h>  
            #include <dht.h>
            #include <BH1750.h>
            #include <Wire.h> 
            #include <Adafruit_BMP085.h>
            #include <MySigningAtsha204.h>
            
            #define CHILD_ID_HUM 0
            #define CHILD_ID_TEMP 1
            #define CHILD_ID_LIGHT 2
            #define CHILD_ID_BARO 3
            #define CHILD_ID_BTEMP 4
            #define CHILD_ID_WINDSPEED 5
            #define CHILD_ID_RAIN 6
            
            #define MESSAGEWAIT 500
            #define DIGITAL_INPUT_RAIN_SENSOR 3
            #define HUMIDITY_SENSOR_DIGITAL_PIN 5
            #define ENCODER_PIN 2
            #define INTERRUPT DIGITAL_INPUT_RAIN_SENSOR-2
        
            const int  windSpeedPin = 2; // contact on pin 2 digital
            int windSpeedPinCounter = 0; // impuls counter
            int windSpeedPinStatus = 0; // actual impuls
            int windSpeedPinStatusAlt = 0; // oude Impuls-Status
            unsigned long windmeterStart;
            unsigned long windmeterStartAlt = 0;
            int windSpeed; // Variable voor Wind Speed
            int beaufort = 0; // Variable Wind in Beaufort
            const int windmeterTime = 10000;
            //float knoten = 0.0;
            //float wind = 0.0;
            unsigned int knoten;
            unsigned int wind;
           
            boolean metric = false;
            int altitude = 16; // meters above sealevel
            float lastBmpTemp = -1;
            float lastPressure = -1;
            float lastHum = -1;
            float lastTemp = -1;
            double temp;
            double hum;
            int BATTERY_SENSE_PIN = A0;
            int lastRainValue = -1;
            int nRainVal;
            boolean bIsRaining = false;
            String strRaining = "NO";
            int lastBatteryPcnt = 0;
            int updateAll = 60;
            int updateCount = 0;
            uint16_t lastLux;
            // unsigned long SLEEP_TIME = 60000;
            unsigned long SLEEP_TIME = 600;
            int batteryBasement = 800;
            float batteryConstant = 100.0 / (1023 - batteryBasement);
        
            MyTransportNRF24 radio;  // NRFRF24L01 radio driver
            MyHwATMega328 hw; // Select AtMega328 hardware profile
            MySigningAtsha204 signer(true); // Select HW ATSHA signing backend
            
            Adafruit_BMP085 bmp = Adafruit_BMP085();
            BH1750 lightSensor;
            dht DHT;
            MySensor gw(radio, hw, signer);
        
            MyMessage msgHum(CHILD_ID_HUM, V_HUM);
            MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP);
            MyMessage msgLux(CHILD_ID_LIGHT, V_LIGHT_LEVEL);
            MyMessage msgBtemp(CHILD_ID_BTEMP, V_TEMP);
            MyMessage msgPressure(CHILD_ID_BARO, V_PRESSURE);
            MyMessage msgWindSpeed(CHILD_ID_WINDSPEED, V_WIND);
            MyMessage msgWGust(CHILD_ID_WINDSPEED, V_GUST);
            MyMessage msgWDirection(CHILD_ID_WINDSPEED, V_DIRECTION);   
            MyMessage msgRain(CHILD_ID_RAIN, V_TRIPPED);
        
            void setup()  
            {
              analogReference(INTERNAL);
              gw.begin(incomingMessage, 3, true);  
              //dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN); 
              bmp.begin();
              gw.sendSketchInfo("Weather Sensor", "1.0");
              gw.present(CHILD_ID_HUM, S_HUM, "WS Humidity");
              gw.present(CHILD_ID_TEMP, S_TEMP, "WS Temperature");
              gw.present(CHILD_ID_LIGHT, S_LIGHT_LEVEL, "WS Lux");
              gw.present(CHILD_ID_BARO, S_BARO, "WS Pressure");
              gw.present(CHILD_ID_BTEMP, S_TEMP, "WS P Temperature");
              gw.present(CHILD_ID_WINDSPEED, S_WIND, "WS Windspeed");
              gw.present(CHILD_ID_RAIN, S_MOTION, "WS Rain");
        
              pinMode(DIGITAL_INPUT_RAIN_SENSOR, INPUT);
              lightSensor.begin();
              metric = gw.getConfig().isMetric;
            }
            
            // Wind Meter https://github.com/chiemseesurfer/arduinoWeatherstation/blob/master/weatherstation/weatherstation.ino
            
            float windmeter()
            {
                windmeterStart = millis(); // Actual start time measuringMessung
                windmeterStartAlt = windmeterStart; // Save start time
            
                windSpeedPinCounter = 0; // Set pulse counter to 0
                windSpeedPinStatusAlt = HIGH; // Set puls status High
            
                while ((windmeterStart - windmeterStartAlt) <= windmeterTime) // until 10000 ms (10 Seconds) ..
                {
                    windSpeedPinStatus = digitalRead(windSpeedPin); // Read input pin 2
                    if (windSpeedPinStatus != windSpeedPinStatusAlt) // When the pin status changed
                    {
                        if (windSpeedPinStatus == HIGH) // When status - HIGH
                        {
                            windSpeedPinCounter++; // Counter + 1
                        }
                    }
                    windSpeedPinStatusAlt = windSpeedPinStatus; // Save status for next loop
                    windmeterStart = millis(); // Actual time
                }
            
                windSpeed =  ((windSpeedPinCounter * 24) / 10) + 0.5; //  WindSpeed - one Pulse ~ 2,4 km/h, 
                windSpeed = (windSpeed / (windmeterTime / 1000)); // Devided in measure time in seconds
                Serial.print("wind Speed : ");
                Serial.println(windSpeed);    
                knoten = windSpeed / 1.852; //knot's
            
                return windSpeed;
            }
            
            void loop()      
            {
              updateCount += 1;
              if (updateCount == updateAll) {
                lastTemp = -1;
                lastHum = -1;
                lastLux = -1;
                lastBmpTemp = -1;
                lastPressure = -1;
                lastRainValue = -1;
                lastBatteryPcnt = -1;
                updateCount = 0;
              }
              delay(2000);
              int chk = DHT.read22(HUMIDITY_SENSOR_DIGITAL_PIN);
              temp = DHT.temperature;
                     //Serial.print("Temperature DHT :");
                     //Serial.println(temp);
              if (isnan(temp)) {
                  lastTemp = -1;
              } else if (temp != lastTemp) {
                lastTemp = temp;
                if (!metric) {
                  temp = temp * 1.8 + 32.0;
                }
                gw.send(msgTemp.set(temp, 1));
                }
              hum = DHT.humidity;
              if (isnan(hum)) {
                  lastHum = -1;
              } else if (hum != lastHum) {
                  lastHum = hum;
                  gw.send(msgHum.set(hum, 1));
              }
              uint16_t lux = lightSensor.readLightLevel();
              if (lux != lastLux) {
                  gw.send(msgLux.set(lux));
                  lastLux = lux;
              }
              float pressure = bmp.readSealevelPressure(altitude) * 0.01;
              float bmptemp = bmp.readTemperature();
              if (!metric) {
                bmptemp = bmptemp * 1.8 + 32.0;
              }
              if (bmptemp != lastBmpTemp) {
                gw.send(msgBtemp.set(bmptemp,1));
                lastBmpTemp = bmptemp;
              }
              if (pressure != lastPressure) {
                gw.send(msgPressure.set(pressure, 0));
                lastPressure = pressure;
              }
              
              bIsRaining = !(digitalRead(DIGITAL_INPUT_RAIN_SENSOR));
              if(bIsRaining){
                  strRaining = "YES";
              }
              else{
                  strRaining = "NO";
              }
          
              //Serial.print("Raining?: ");
              //Serial.print(strRaining);  
              //Serial.print("\t Moisture Level: ");
              //Serial.println(nRainVal);
              //http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/arduino-rain-sensor-module-guide-and-tutorial/
        
              gw.send(msgRain.set(bIsRaining, 1));
        
              wind = windmeter();
              Serial.print("Wind : ");
              Serial.println(wind);
              int wdirection = 1;
              int wgust = 1;
              gw.send(msgWindSpeed.set(wind, 1));
              gw.send(msgWGust.set(wgust, 1));
              gw.send(msgWDirection.set(wdirection, 1));
              
              int sensorValue = analogRead(BATTERY_SENSE_PIN);
              int batteryPcnt = (sensorValue - batteryBasement) * batteryConstant;
              if (lastBatteryPcnt != batteryPcnt) {
                gw.sendBatteryLevel(batteryPcnt);
                lastBatteryPcnt = batteryPcnt;
              }
              gw.sleep(SLEEP_TIME);
           }
        
            void incomingMessage(const MyMessage & message) {
            // We only expect one type of message from controller. But we better check anyway.
             if (message.isAck()) {
               Serial.println("This is an ack from gateway");
             }
            }
        
        

        regards Peer

        Domoticz / My Sensors / Z-Wave
        https://www.kermisbuks.nl

        1 Reply Last reply
        0
        • E Offline
          E Offline
          Elfnoir
          wrote on last edited by
          #94

          Hi,
          It means that there is no possibility to implement wind speed on this weather station... ok.
          I've just received the good Li-Ion charging component, I can continue with the construction!

          I'll post if I will be facing for some trouble, or when it will be finished.

          1 Reply Last reply
          0
          • SalmoidesS Salmoides

            I remember having one of those beginner electronic kits when I was young and I was so excited the day I listened to our local radio station with the crystal radio I built with the kit. Decades later now, I’m finally re-living my childhood with MySensors. It was fun back then and it is again. I’m definitely a noob at this, I’m not an electrical engineer, but I have a knack for adopting the work of others and applying it to my own world. So to start off this project, I first need to thank Hek and all the other more knowledgeable and capable people that have developed what I use. This is really fun.

            Many of the MySensor projects are weather related, and this one is no different. I figured if I can do simple sensoring, I’ll learn the basics necessary to move on to the more advanced technologies. I am so new to this that I had to buy a soldering iron and learn how to use it. Research and practice are all part of this, and to that end I’ve already built my Vera Serial Gateway and my first sensor – a battery powered temperature and humidity sensor that sits in my kitchen. This project is my attempt to extend that knowledge to a mini-weather station that operates outdoors.

            My requirements were simple: 1) Build an inexpensive outdoor weather station, 2) Use the low-power battery features found in the MySensors Arduino libraries, and 3) Integrate it into my Vera home automation environment. I first put a list together of the components I could put into the weather station to comply with my first requirement. The list goes as follows (I’ve been using eBay, usually in lots of 10):

            • Arduino Pro Mini 3.3v 8MHz processor @ $2.50 USD
            • NRF24L01+ Transceiver @ $0.90
            • DHT22 Humidity & Temperature sensor @ $3.50
            • BMP180 Barometric Pressure sensor @ $1.70
            • BH1750FVI Ambient Light Intensity sensor @ $2.10
            • Rain Sensor Module @ $1.30

            The weather station components total $12.00 USD without power and a project box. Humidity was actually the most expensive piece given that the BMP180 also provides temperature. The DHT11 is less costly, but doesn’t really provide the range for an outdoor sensor. I did look at adding some other sensors. For another $10 I could add Ultraviolet sensing, for $25 I could put in a lightning sensor, $45 for wind speed, and even more for wind direction and a rain gauge. All those others would be great to have, but too costly for this project. I might try my hand at building an anemometer to add to this, and I see others are working on rain gauges, but those are projects for another day.

            I then needed power and an enclosure. I could have put them in a large waterproof box ($2.70), a three cell AA battery holder ($0.80), and some DuraRabbit batteries for a year ($3.00). For an additional $6.50, I was ready to go. Oh, did I mention I was lazy? I don’t really want to swap out the batteries every six months (or less), so I decided to splurge and go the solar route.

            Add a 5v solar panel ($3.35) and a 3.7v 1000mAh li-ion battery ($3.75), and some way to charge the battery (Micro USB 5V 1A 18650 Lithium Battery Charger Board With Protection Module @ $0.75) instead, and my total project cost went to $22.55. Of that, over $10 went to the box, the panel and charger, and the battery. Then I found this.

            SolarLight.jpg

            It’s entitled “16 LED Solar Power Motion Sensor Security Lamp Outdoor Waterproof Light” (http://www.ebay.com/itm/271693521438) that you can get for $9.00. I now had a $21 weather station ready to be built.

            Taking apart the lamp, I removed the LED panel (worth at least $2.00) and the control board (this has some good stuff on it like a PIR, a light sensor, and the battery charging circuitry, but its use is well beyond my skills), and put them away for another project.

            LEDArray.jpg

            I took a 5x7cm fiberglass PCB and cut a few notches in the sides so the board would fit within the new project case. Using the mounting screws that held the LED board down, I had a good way to affix the circuit board to the case.

            5x7PBP.jpg

            Next, I laid out how to cram all these components (including the R1 at 1MΩ & R2 [a 3296W potentiometer 500kΩ] resistors for the voltage divider to track battery voltage and the capacitor for the radio) into the enclosure. I ended up with a tight fit, but very manageable.

            BoardLayout.jpg

            One rule I’ve learned is to always breadboard all the components and measure the performance. This is where I check the current being used during the sleep mode and I get to test my preliminary sketch. It is a very good use of my time as I’ve come upon some bad components in what little of this that I’ve done and this is where they can be identified.

            Breadboard.jpg

            When I started learning the how-to’s of this hobby, I bought all sorts of stuff. One of the first purchases was one of those boxes of 22-gauge wire. The first one was stranded, so then I had to try solid to see if it was any easier to work with. It is, but is still huge compared to what is needed for these low-current projects. I found some old computer cables that had 26-gauge stranded in them. Better, but not what I wanted. Finally I came upon some discussions of wire-wrapping. I now use 30-gauge solid, first installed with a wire-wrapping tool (what a scam and I even found a cheap one for less than $20.)

            I decided to add two additional features after breadboarding the circuit. First, I wanted a reset button that could be reached without taking the case apart. At times I’ve found my sensors need a quick reboot. A switch was added to the underside of the PCB and a hole in the underside of the case will allow me to use a paperclip to do a reset.

            The other feature I added was a jumper that I could use to enable or disable the rain sensor if I chose to at a later date. For some reason it adds a significant load to the circuit. Without the rain sensor enabled, the circuit idles at 270 µA. With it I get 0.98 mA during the gw.sleep command. If I was smart enough, I’m sure I could get that down, but that’s still something to be learned. The underside, as usual, looked like spaghetti.

            Wired.jpg

            After a little bit of solder (I’m actually getting pretty good at that part), I have a fully functional circuit. Since the Li-Ion charging component takes a micro-USB connection, I charged the battery fully and then adjusted the pot to get the AO output to be right at 1023. For this setup my voltmeter showed the battery at 4.15v. I then needed to calibrate the circuit to get to the lower end of the acceptable voltage range. I’ve seen several different numbers for the bottom end of a 3.7v li-ion battery, some down to 2.7v. I chose 3.3v as my lowest acceptable value and proceeded to drain the battery (those LED arrays came in handy after all) down to 3.0v to see what the circuit value came out to be. For my setup, at 3.3v I was getting a value of 800 from pin A0. I updated the sketch so that it would be equal to 0% (hopefully it never gets there.)

            I had one addition to make to the project case. The rain sensor has a board that needs to be exposed to the elements. I drilled a couple of holes in the front end of the case and found some connectors that would work. The hole in the original case for the PIR sensor was a great opening to pass the cable through. The results actually look pretty good, if I can say so myself.

            Rain.png

            A couple of last minute touch-ups: two holes in the lens of the light, one for the reset button and one for the pot that adjusts the sensitivity of the rain sensor. I also take off any LEDs on the circuit, even LED13 on the Arduino. Every little bit helps. Does an LED actually illuminate if no one is there to see it? The final product came out nice.

            FinalTop.jpg

            One last upload of the final sketch. I took all the weather prediction logic out of the pressure sketch to save room for the other components. The SLEEP_TIME parameter is set for once every minute. I also added some lines of code to have the sensor update all measurements once an hour. I really like the ability to see when a measurement was last updated. That’s a nice touch to the MySensors library.

                #include <SPI.h>
                #include <MySensor.h>  
                #include <DHT.h>  
                #include <BH1750.h>
                #include <Wire.h> 
                #include <Adafruit_BMP085.h>
                
                #define CHILD_ID_HUM 0
                #define CHILD_ID_TEMP 1
                #define CHILD_ID_LIGHT 2
                #define CHILD_ID_BARO 3
                #define CHILD_ID_BTEMP 4
                #define CHILD_ID_RAIN 5
                
                #define DIGITAL_INPUT_RAIN_SENSOR 3 
                #define HUMIDITY_SENSOR_DIGITAL_PIN 4
                #define INTERRUPT DIGITAL_INPUT_RAIN_SENSOR-2
                
                boolean metric = false;
                int altitude = 221; // 741 feet above sealevel
                float lastBmpTemp = -1;
                float lastPressure = -1;
                float lastHum = -1;
                float lastTemp = -1;
                int BATTERY_SENSE_PIN = A0;
                int lastRainValue = -1;
                int lastBatteryPcnt = 0;
                int updateAll = 60;
                int updateCount = 0;
                uint16_t lastLux;
                unsigned long SLEEP_TIME = 60000;
                int batteryBasement = 800;
                float batteryConstant = 100.0 / (1023 - batteryBasement);
                
                Adafruit_BMP085 bmp = Adafruit_BMP085();
                BH1750 lightSensor;
                DHT dht;
                MySensor gw;
                
                MyMessage msgHum(CHILD_ID_HUM, V_HUM);
                MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP);
                MyMessage msgLux(CHILD_ID_LIGHT, V_LIGHT_LEVEL);
                MyMessage msgBtemp(CHILD_ID_BTEMP, V_TEMP);
                MyMessage msgPressure(CHILD_ID_BARO, V_PRESSURE);
                MyMessage msgRain(CHILD_ID_RAIN, V_TRIPPED);
                
                void setup()  
                {
                  analogReference(INTERNAL);
                  gw.begin();
                  dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN); 
                  bmp.begin();
                  gw.sendSketchInfo("Weather Sensor", "1.0");
                  gw.present(CHILD_ID_HUM, S_HUM);
                  gw.present(CHILD_ID_TEMP, S_TEMP);
                  gw.present(CHILD_ID_LIGHT, S_LIGHT_LEVEL);
                  gw.present(CHILD_ID_BARO, S_BARO);
                  gw.present(CHILD_ID_BTEMP, S_TEMP);
                  gw.present(CHILD_ID_RAIN, S_MOTION);
                  pinMode(DIGITAL_INPUT_RAIN_SENSOR, INPUT);
                  lightSensor.begin();
                  metric = gw.getConfig().isMetric;
                }
                
                void loop()      
                {
                  updateCount += 1;
                  if (updateCount == updateAll) {
                    lastTemp = -1;
                    lastHum = -1;
                    lastLux = -1;
                    lastBmpTemp = -1;
                    lastPressure = -1;
                    lastRainValue = -1;
                    lastBatteryPcnt = -1;
                    updateCount = 0;
                  }
                  delay(dht.getMinimumSamplingPeriod());
                  float temperature = dht.getTemperature();
                  if (isnan(temperature)) {
                      lastTemp = -1;
                  } else if (temperature != lastTemp) {
                    lastTemp = temperature;
                    if (!metric) {
                      temperature = temperature * 1.8 + 32.0;
                    }
                    gw.send(msgTemp.set(temperature, 1));
                  }
                  float humidity = dht.getHumidity();
                  if (isnan(humidity)) {
                      lastHum = -1;
                  } else if (humidity != lastHum) {
                      lastHum = humidity;
                      gw.send(msgHum.set(humidity, 1));
                  }
                  uint16_t lux = lightSensor.readLightLevel();
                  if (lux != lastLux) {
                      gw.send(msgLux.set(lux));
                      lastLux = lux;
                  }
                  float pressure = bmp.readSealevelPressure(altitude) * 0.01;
                  float bmptemp = bmp.readTemperature();
                  if (!metric) {
                    bmptemp = bmptemp * 1.8 + 32.0;
                  }
                  if (bmptemp != lastBmpTemp) {
                    gw.send(msgBtemp.set(bmptemp,1));
                    lastBmpTemp = bmptemp;
                  }
                  if (pressure != lastPressure) {
                    gw.send(msgPressure.set(pressure, 0));
                    lastPressure = pressure;
                  }
                  int rainValue = digitalRead(DIGITAL_INPUT_RAIN_SENSOR);
                  if (rainValue != lastRainValue) {
                    gw.send(msgRain.set(rainValue==0?1:0));
                    lastRainValue = rainValue;
                  }
                  int sensorValue = analogRead(BATTERY_SENSE_PIN);
                  int batteryPcnt = (sensorValue - batteryBasement) * batteryConstant;
                  if (lastBatteryPcnt != batteryPcnt) {
                    gw.sendBatteryLevel(batteryPcnt);
                    lastBatteryPcnt = batteryPcnt;
                 }
                  gw.sleep(SLEEP_TIME);
                }
            

            Then a test to make sure it’s dumping out its results as it should

                sensor started, id 1
                send: 1-1-0-0 s=255,c=0,t=17,pt=0,l=5,st=ok:1.4.1
                send: 1-1-0-0 s=255,c=3,t=6,pt=1,l=1,st=ok:0
                read: 0-0-1 s=255,c=3,t=6,pt=0,l=1:I
                send: 1-1-0-0 s=255,c=3,t=11,pt=0,l=14,st=ok:Weather Sensor
                send: 1-1-0-0 s=255,c=3,t=12,pt=0,l=3,st=ok:1.0
                send: 1-1-0-0 s=0,c=0,t=7,pt=0,l=5,st=ok:1.4.1
                send: 1-1-0-0 s=1,c=0,t=6,pt=0,l=5,st=ok:1.4.1
                send: 1-1-0-0 s=2,c=0,t=16,pt=0,l=5,st=ok:1.4.1
                send: 1-1-0-0 s=3,c=0,t=8,pt=0,l=5,st=ok:1.4.1
                send: 1-1-0-0 s=4,c=0,t=6,pt=0,l=5,st=ok:1.4.1
                send: 1-1-0-0 s=5,c=0,t=1,pt=0,l=5,st=ok:1.4.1
                send: 1-1-0-0 s=1,c=1,t=0,pt=7,l=5,st=ok:80.8
                send: 1-1-0-0 s=0,c=1,t=1,pt=7,l=5,st=ok:28.2
                send: 1-1-0-0 s=2,c=1,t=23,pt=3,l=2,st=ok:83
                send: 1-1-0-0 s=4,c=1,t=0,pt=7,l=5,st=ok:80.6
                send: 1-1-0-0 s=3,c=1,t=4,pt=7,l=5,st=ok:1020
                send: 1-1-0-0 s=5,c=1,t=16,pt=2,l=2,st=ok:0
                send: 1-1-0-0 s=255,c=3,t=0,pt=1,l=1,st=ok:91
            

            Finally, we then go to Vera and make sure she’s happy.

            MIOS.jpg

            This has been a great learning experience for me as it’s my first documented project. I made a bunch of mistakes in between most of the steps you see here. I’ve practiced my soldering techniques for many, many hours. One battery went bye-bye when I didn’t notice the leads had crossed. The smoke was a real good indicator that I’d messed up. I’ve ruined my fair share of components, but I chalk it all up to experience and don’t dwell on them. This hobby is a lot less expensive than golf or fishing, even with my mistakes. I look forward to bigger and better as I continue learn. Thanks again, Hek. This is a hobby that I truly enjoy.

            AffordableTechA Offline
            AffordableTechA Offline
            AffordableTech
            wrote on last edited by
            #95

            @Salmoides - I must congratulate you on a very neat and professional build.

            I'm not sure if you are still hanging around this forum but even if you aren't, others may find the following suggestion helpful.

            @Salmoides said*:

            With it [the rain detector] I get 0.98 mA [drain] during the gw.sleep command

            There is a very easy, but often overlooked, method to disable sensors to reduce battery drain that requires no additional components. Because the sensor draws approximately 1ma, that is well within the 'drive' capacity of an Arduino output pin (which is about 20ma). So, all you need to do is wire the "+" power pin of the rain sensor to a spare output pin and "digitalWrite(pin,HIGH)" to turn it on and "digitalWrite(pin,LOW)" to turn it off.

            IMPORTANT: You should check the specs of the processor you are using to make sure the I/O pin can 'drive' or 'source' more than the required current of the sensor you wish to switch. I'd suggest allowing a 50% safety margin.

            Paul

            1 Reply Last reply
            0
            • 5546dug5 Offline
              5546dug5 Offline
              5546dug
              wrote on last edited by 5546dug
              #96

              @AffordableTech

              Looks like a feasible idea, as my stn does consume all the battery on bad days, and yes I needed the diode between the solar and controller to get to the right voltage

              cheers doug

              1 Reply Last reply
              0
              • RenardR Offline
                RenardR Offline
                Renard
                wrote on last edited by
                #97

                Hello, it a nice job
                I am french so I beg your pardon for my poor English
                Can you , please show me how the lipo and the solar cell are connected and how the arduino is powered by the little shield (Charger Board ) at the right of picture over the DHT ?
                Thanks

                1 Reply Last reply
                0
                • bisschopsrB Offline
                  bisschopsrB Offline
                  bisschopsr
                  wrote on last edited by
                  #98

                  @gigi: Besides the already adressed error in the Fritzing I have anaother question. In the diagram there is a charge controller for 12V. The original design in this threat uses a 5V charging module. What module are you using or planning to use?
                  Thanks Ralph

                  Domoticz, P1 meter interface, MySensors and more to come!

                  1 Reply Last reply
                  0
                  • E Offline
                    E Offline
                    Elfnoir
                    wrote on last edited by
                    #99

                    @Renard : Bonjour! Je fais le raccordement cette semaine j'espère, je galère sur la déclaration dans Domoticz et l'étalonnage pour controler la charge de la batterie, mais je dirais:

                    • OUT+ et - sur RAW et GND de l'Arduino
                    • B+ B- à la batterie
                    • "+ et -" au panneau solaire, c'est ce qu'il me semble sur les photos.

                    @bisschopsr : Hi, There is no charge controler 5 or 12 volts. On my Fritzing to understand better the scheme (Post #70), I draw batteries and solar panel, but Fritzings following are with 12volts charger, I don't know why. If you purchased a solar lamp, it's to avoid 5 or 12volts charger and use the sun ;-)

                    bisschopsrB 1 Reply Last reply
                    0
                    • RenardR Offline
                      RenardR Offline
                      Renard
                      wrote on last edited by
                      #100

                      Merci pour la réponse
                      C 'est donc l'arduino qui gère la décharge..
                      Je vais donc mettre "Arduino Compatible Solar Charger shield -LiPo rider" a la place ...

                      Thanks for answer
                      It is the arduino wich control the discharge
                      I put "Arduino Compatible Solar Charger shield -LiPo rider" without control of lipo capacity

                      1 Reply Last reply
                      1
                      • E Elfnoir

                        @Renard : Bonjour! Je fais le raccordement cette semaine j'espère, je galère sur la déclaration dans Domoticz et l'étalonnage pour controler la charge de la batterie, mais je dirais:

                        • OUT+ et - sur RAW et GND de l'Arduino
                        • B+ B- à la batterie
                        • "+ et -" au panneau solaire, c'est ce qu'il me semble sur les photos.

                        @bisschopsr : Hi, There is no charge controler 5 or 12 volts. On my Fritzing to understand better the scheme (Post #70), I draw batteries and solar panel, but Fritzings following are with 12volts charger, I don't know why. If you purchased a solar lamp, it's to avoid 5 or 12volts charger and use the sun ;-)

                        bisschopsrB Offline
                        bisschopsrB Offline
                        bisschopsr
                        wrote on last edited by
                        #101

                        Thanks for the anwer @Elfnoir. I looked back at your schedule and there is some logic between the solar panel, the batteries and the other components (as the power consumers). That logic in the middle is what I refered to as charge controller. I would like to know what part this is.
                        Thanks again.
                        Ralph

                        Domoticz, P1 meter interface, MySensors and more to come!

                        1 Reply Last reply
                        0
                        • E Offline
                          E Offline
                          Elfnoir
                          wrote on last edited by
                          #102

                          @Renard c'est bien l'arduino qui gère la décharge et envoi l'info à Domoticz; c'est pour cela que tu dois étalonner le min/max avec le potentiomètre
                          it is the Arduino which manages the discharge and send the info to Domoticz ; that's why you have to calibrate the min / max with the potentiometer

                          @bisschopsr If I well understand your question, the module which take the solar power to charge the battery with providing in the same time power to the arduino, and provide power of the battery to the arduino when there is no sun or at night: it's the Lipo Ride. There is no monitoring from the Arduino to the Lipo, but the Arduino read the level of voltage coming from the battery and send it to Domoticz.
                          Do I understand well your question please?

                          bisschopsrB 1 Reply Last reply
                          0
                          • E Elfnoir

                            @Renard c'est bien l'arduino qui gère la décharge et envoi l'info à Domoticz; c'est pour cela que tu dois étalonner le min/max avec le potentiomètre
                            it is the Arduino which manages the discharge and send the info to Domoticz ; that's why you have to calibrate the min / max with the potentiometer

                            @bisschopsr If I well understand your question, the module which take the solar power to charge the battery with providing in the same time power to the arduino, and provide power of the battery to the arduino when there is no sun or at night: it's the Lipo Ride. There is no monitoring from the Arduino to the Lipo, but the Arduino read the level of voltage coming from the battery and send it to Domoticz.
                            Do I understand well your question please?

                            bisschopsrB Offline
                            bisschopsrB Offline
                            bisschopsr
                            wrote on last edited by
                            #103

                            @Elfnoir You understood the question correct :). That was the answer I was looking for. So your battery is something like a 3.7V LiOn?
                            Thanks again
                            Ralph

                            Domoticz, P1 meter interface, MySensors and more to come!

                            E 1 Reply Last reply
                            0
                            • bisschopsrB bisschopsr

                              @Elfnoir You understood the question correct :). That was the answer I was looking for. So your battery is something like a 3.7V LiOn?
                              Thanks again
                              Ralph

                              E Offline
                              E Offline
                              Elfnoir
                              wrote on last edited by
                              #104

                              @bisschopsr yes, the battery inside the “16 LED Solar Power Motion Sensor Security Lamp Outdoor Waterproof Light” (http://www.ebay.com/itm/271693521438) is 3.7v 800mAh.

                              bisschopsrB 1 Reply Last reply
                              0
                              • E Elfnoir

                                @bisschopsr yes, the battery inside the “16 LED Solar Power Motion Sensor Security Lamp Outdoor Waterproof Light” (http://www.ebay.com/itm/271693521438) is 3.7v 800mAh.

                                bisschopsrB Offline
                                bisschopsrB Offline
                                bisschopsr
                                wrote on last edited by
                                #105

                                @Elfnoir Thank you very much. I found a local LED lamp with 3.6V 600mAh NiMh battery. I'm going to try and make a simular solution from that one.

                                Domoticz, P1 meter interface, MySensors and more to come!

                                1 Reply Last reply
                                0
                                • PetjepetP Offline
                                  PetjepetP Offline
                                  Petjepet
                                  wrote on last edited by
                                  #106

                                  @Salmoides I built this weather station (exactly as decribed above in the initial message) and have some problems with the radio when going about 15 meters from the gateway.
                                  I have several other nodes on similar distance working just fine.

                                  I guess the metal top of the case (where the solar panel is in) is causing the issue. Is there a way to change that? Maybe an additional antenna wire (how)?

                                  bisschopsrB 1 Reply Last reply
                                  0
                                  • PetjepetP Petjepet

                                    @Salmoides I built this weather station (exactly as decribed above in the initial message) and have some problems with the radio when going about 15 meters from the gateway.
                                    I have several other nodes on similar distance working just fine.

                                    I guess the metal top of the case (where the solar panel is in) is causing the issue. Is there a way to change that? Maybe an additional antenna wire (how)?

                                    bisschopsrB Offline
                                    bisschopsrB Offline
                                    bisschopsr
                                    wrote on last edited by
                                    #107

                                    @Petjepet The metal is definitely influencing the radio performance. It’s 2.4 GHz like the home wifi signal, so you might understand the impact if you compare these two. A solution to use a radio with an external antenna that can be placed outside the metal case. There is a radio with ext. antenna available, you might need an additional extension cable of say 15-30 cm. Does this help.

                                    Regards,

                                    Ralph

                                    Domoticz, P1 meter interface, MySensors and more to come!

                                    1 Reply Last reply
                                    0
                                    • PetjepetP Offline
                                      PetjepetP Offline
                                      Petjepet
                                      wrote on last edited by
                                      #108

                                      @bisschopsr That must be the same one I use for the gateway with the external antenna.
                                      I also saw once a wire connected to the standard radio but can't recall where I saw that.

                                      bisschopsrB 1 Reply Last reply
                                      0
                                      • PetjepetP Petjepet

                                        @bisschopsr That must be the same one I use for the gateway with the external antenna.
                                        I also saw once a wire connected to the standard radio but can't recall where I saw that.

                                        bisschopsrB Offline
                                        bisschopsrB Offline
                                        bisschopsr
                                        wrote on last edited by
                                        #109

                                        @Petjepet Yes, you are probably using this version for the GW (I know I am :-)). I have also see people hacking the original module by attaching a wire antenna instead of the on board printed antenna. The advantage of the other antenna based board is, you can actually bring the antenna to the outside. Something more difficult to do with a wire hack.

                                        Domoticz, P1 meter interface, MySensors and more to come!

                                        1 Reply Last reply
                                        0
                                        • mrc-coreM Offline
                                          mrc-coreM Offline
                                          mrc-core
                                          wrote on last edited by
                                          #110

                                          I have been adapting this mini-weather station code to he API 2.0 and add it the battery sensor. Here's my first attemp

                                          // Enable debug prints to serial monitor
                                          #define MY_DEBUG 
                                          
                                          // Enable and select radio type attached
                                          #define MY_RADIO_NRF24
                                          //#define MY_RADIO_RFM69
                                          
                                          #define MY_NODE_ID 2
                                          #define MY_PARENT_NODE_ID  0
                                          #define MY_PARENT_NODE_IS_STATIC
                                          
                                          #include <SPI.h>
                                          #include <MySensors.h>  
                                          #include <DHT.h>
                                          #include <BH1750.h>
                                          #include <Wire.h> 
                                          #include <Adafruit_BMP085.h>
                                          
                                          #define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
                                          
                                          #define CHILD_ID_HUM 0
                                          #define CHILD_ID_TEMP 1
                                          #define CHILD_ID_LIGHT 2
                                          #define CHILD_ID_BARO 3
                                          #define CHILD_ID_BTEMP 4
                                          #define CHILD_ID_WINDSPEED 5
                                          #define CHILD_ID_BATTERY 6
                                              
                                          #define MESSAGEWAIT 500
                                          #define DHT_DATA_PIN 3          // Pin 3 digital = DHT11 or DHT12
                                          #define windSpeedPin 4          // Pin 4 digital = Anenometer
                                          #define SENSOR_TEMP_OFFSET 0
                                          #define STABILIZATION_TIME 500  // Let the sensor stabilize 0.5 seconds before reading
                                          
                                          static const uint8_t FORCE_UPDATE_N_READS = 10;
                                          static const uint64_t UPDATE_INTERVAL = 60000;
                                          
                                          #define BATTERY_FULL 7400 // 3,000 millivolts when battery is full (assuming 2xAA)
                                          #define BATTERY_ZERO 2800 // 1,700 millivolts when battery is empty (reqires blown brownout detection fuse, use 2,800 otherwise)
                                          
                                          const float ALTITUDE = 162; // <-- adapt this value to your own location's altitude.
                                          
                                          int windSpeedPinCounter = 0;        // impuls counter
                                          int windSpeedPinStatus = 0;         // actual impuls
                                          int windSpeedPinStatusAlt = 0;      // oude Impuls-Status
                                          unsigned long windmeterStart;
                                          unsigned long windmeterStartAlt = 0;
                                          int windSpeed;                      // Variable voor Wind Speed
                                          int beaufort = 0;                   // Variable Wind in Beaufort
                                          const int windmeterTime = 10000;
                                          //float knoten = 0.0;
                                          //float wind = 0.0;
                                          unsigned int knoten;
                                          unsigned int wind;
                                          
                                          long oldvoltage = 0;
                                          bool metric = true;
                                          float lastBmpTemp;
                                          float lastPressure;
                                          float lastHum;
                                          float lastTemp;
                                          uint8_t nNoUpdatesTemp;
                                          uint8_t nNoUpdatesHum;
                                          
                                          int updateAll = 60;
                                          int updateCount = 0;
                                          uint16_t lastLux;
                                          
                                          unsigned long SLEEP_TIME = 60000;
                                          
                                          
                                          Adafruit_BMP085 bmp = Adafruit_BMP085();
                                          BH1750 lightSensor;
                                          DHT dht;
                                          
                                          MyMessage voltage_msg(CHILD_ID_BATTERY, V_VOLTAGE);
                                          MyMessage msgHum(CHILD_ID_HUM, V_HUM);
                                          MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP);
                                          MyMessage msgLux(CHILD_ID_LIGHT, V_LIGHT_LEVEL);
                                          MyMessage msgBtemp(CHILD_ID_BTEMP, V_TEMP);
                                          MyMessage msgPressure(CHILD_ID_BARO, V_PRESSURE);
                                          MyMessage msgWindSpeed(CHILD_ID_WINDSPEED, V_WIND);
                                          MyMessage msgWGust(CHILD_ID_WINDSPEED, V_GUST);
                                          MyMessage msgWDirection(CHILD_ID_WINDSPEED, V_DIRECTION);
                                          
                                          void setup()
                                          {
                                            analogReference(INTERNAL);
                                            dht.setup(DHT_DATA_PIN); // set data pin of DHT sensor
                                            if (UPDATE_INTERVAL <= dht.getMinimumSamplingPeriod()) 
                                            {
                                              Serial.println("Warning: UPDATE_INTERVAL is smaller than supported by the sensor!");
                                            }
                                            // Sleep for the time of the minimum sampling period to give the sensor time to power up
                                            // (otherwise, timeout errors might occure for the first reading)
                                            sleep(dht.getMinimumSamplingPeriod());
                                            if (!bmp.begin()) 
                                            {
                                              Serial.println("Could not find a valid BMP085 sensor, check wiring!");
                                              while (1) {}
                                            }  
                                            metric = getConfig().isMetric;
                                          }
                                          
                                          void presentation()  
                                          {
                                            lightSensor.begin();
                                            
                                            sendSketchInfo("Weather Sensor", "4.1.C");
                                            
                                            present(CHILD_ID_HUM, S_HUM, "WS Humidity");
                                          //  present(CHILD_ID_TEMP, S_TEMP, "WS Temperature");
                                            present(CHILD_ID_LIGHT, S_LIGHT_LEVEL, "WS Lux");
                                            present(CHILD_ID_BARO, S_BARO, "WS Pressure");
                                            present(CHILD_ID_BTEMP, S_TEMP, "WS P Temperature");
                                            present(CHILD_ID_WINDSPEED, S_WIND, "WS Windspeed");
                                            present(CHILD_ID_BATTERY, S_CUSTOM, "WS Battery"); 
                                          }
                                          
                                          // Wind Meter https://github.com/chiemseesurfer/arduinoWeatherstation/blob/master/weatherstation/weatherstation.ino
                                          
                                          float windmeter()
                                          {
                                            windmeterStart = millis(); // Actual start time measuringMessung
                                            windmeterStartAlt = windmeterStart; // Save start time
                                            
                                            windSpeedPinCounter = 0; // Set pulse counter to 0
                                            windSpeedPinStatusAlt = HIGH; // Set puls status High
                                              
                                            while ((windmeterStart - windmeterStartAlt) <= windmeterTime) // until 10000 ms (10 Seconds) ..
                                            {
                                              windSpeedPinStatus = digitalRead(windSpeedPin); // Read input pin 2
                                              if (windSpeedPinStatus != windSpeedPinStatusAlt) // When the pin status changed
                                              {
                                                if (windSpeedPinStatus == HIGH) // When status - HIGH
                                                {
                                                  windSpeedPinCounter++; // Counter + 1
                                                 }
                                               }
                                               windSpeedPinStatusAlt = windSpeedPinStatus; // Save status for next loop
                                               windmeterStart = millis(); // Actual time
                                             }
                                             windSpeed =  ((windSpeedPinCounter * 24) / 10) + 0.5; //  WindSpeed - one Pulse ~ 2,4 km/h, 
                                             windSpeed = (windSpeed / (windmeterTime / 1000)); // Devided in measure time in seconds
                                             Serial.print("wind Speed : ");
                                             Serial.println(windSpeed);    
                                             knoten = windSpeed / 1.852; //knot's
                                             return windSpeed;
                                          }
                                          
                                          void loop()      
                                          {
                                            updateCount += 1;
                                            if (updateCount == updateAll) 
                                            {
                                              lastTemp = -1;
                                              lastHum = -1;
                                              lastLux = -1;
                                              lastBmpTemp = -1;
                                              lastPressure = -1;
                                              updateCount = 0;
                                             }
                                          
                                             long voltage = readVcc();
                                             if (oldvoltage != voltage) { // Only send battery information if voltage has changed, to conserve battery.
                                                send(voltage_msg.set(voltage / 1000.0, 3)); // redVcc returns millivolts and set wants volts and how many decimals (3 in our case)
                                                sendBatteryLevel(round((voltage - BATTERY_ZERO) * 100.0 / (BATTERY_FULL - BATTERY_ZERO)));
                                                oldvoltage = voltage;
                                             }
                                              
                                             delay(2000);
                                          
                                             // Force reading sensor, so it works also after sleep()
                                             dht.readSensor(true);
                                            
                                             // Get temperature from DHT library
                                             float temperature = dht.getTemperature();
                                             if (isnan(temperature)) 
                                             {
                                              Serial.println("Failed reading temperature from DHT!");
                                             }
                                             else if (temperature != lastTemp || nNoUpdatesTemp == FORCE_UPDATE_N_READS) 
                                             {
                                              // Only send temperature if it changed since the last measurement or if we didn't send an update for n times
                                              lastTemp = temperature;
                                              if (!metric) 
                                              {
                                                temperature = dht.toFahrenheit(temperature);
                                              }
                                              // Reset no updates counter
                                              nNoUpdatesTemp = 0;
                                              temperature += SENSOR_TEMP_OFFSET;
                                              send(msgTemp.set(temperature, 1));
                                          
                                              #ifdef MY_DEBUG
                                              Serial.print("T: ");
                                              Serial.println(temperature);
                                              #endif
                                              }
                                              else 
                                              {
                                                // Increase no update counter if the temperature stayed the same
                                                nNoUpdatesTemp++;
                                              }
                                          
                                              // Get humidity from DHT library
                                              float humidity = dht.getHumidity();
                                              if (isnan(humidity)) 
                                              {
                                                Serial.println("Failed reading humidity from DHT");
                                              } 
                                              else if (humidity != lastHum || nNoUpdatesHum == FORCE_UPDATE_N_READS) 
                                              {
                                                // Only send humidity if it changed since the last measurement or if we didn't send an update for n times
                                                lastHum = humidity;
                                                // Reset no updates counter
                                                nNoUpdatesHum = 0;
                                                send(msgHum.set(humidity, 1));
                                          
                                              #ifdef MY_DEBUG
                                              Serial.print("H: ");
                                              Serial.println(humidity);
                                              #endif
                                              }
                                              else 
                                              {
                                                // Increase no update counter if the humidity stayed the same
                                                nNoUpdatesHum++;
                                              }
                                              uint16_t lux = lightSensor.readLightLevel();
                                              if (lux != lastLux) 
                                              {
                                                send(msgLux.set(lux));
                                                lastLux = lux;
                                              }
                                              float pressure = bmp.readSealevelPressure(ALTITUDE) * 0.01;
                                              float bmptemp = bmp.readTemperature();
                                              if (!metric)
                                              {
                                                bmptemp = bmptemp * 1.8 + 32.0;
                                              }
                                              if (bmptemp != lastBmpTemp) 
                                              {
                                                send(msgBtemp.set(bmptemp,1));
                                                lastBmpTemp = bmptemp;
                                              }
                                              if (pressure != lastPressure) 
                                              {
                                                send(msgPressure.set(pressure, 0));
                                                lastPressure = pressure;
                                              }
                                          
                                              wind = windmeter();
                                              Serial.print("Wind : ");
                                              Serial.println(wind);
                                              int wdirection = 1;
                                              int wgust = 1;
                                              send(msgWindSpeed.set(wind, 1));
                                              send(msgWGust.set(wgust, 1));
                                              send(msgWDirection.set(wdirection, 1));
                                              sleep(SLEEP_TIME);
                                          }
                                          
                                          void incomingMessage(const MyMessage & message) 
                                          {
                                            // We only expect one type of message from controller. But we better check anyway.
                                            if (message.isAck()) 
                                            {
                                              Serial.println("This is an ack from gateway");
                                            }
                                          }
                                          
                                          long readVcc()
                                          {
                                            // From http://provideyourown.com/2012/secret-arduino-voltmeter-measure-battery-voltage/
                                            // Read 1.1V reference against AVcc
                                            // set the reference to Vcc and the measurement to the internal 1.1V reference
                                          #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
                                            ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
                                          #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
                                            ADMUX = _BV(MUX5) | _BV(MUX0);
                                          #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
                                            ADMUX = _BV(MUX3) | _BV(MUX2);
                                          #else
                                            ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
                                          #endif
                                          
                                            delay(2); // Wait for Vref to settle
                                            ADCSRA |= _BV(ADSC); // Start conversion
                                            while (bit_is_set(ADCSRA, ADSC)); // measuring
                                          
                                            uint8_t low  = ADCL; // must read ADCL first - it then locks ADCH
                                            uint8_t high = ADCH; // unlocks both
                                          
                                            long result = (high << 8) | low;
                                          
                                            result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
                                            return result; // Vcc in millivolts
                                          }
                                          

                                          It a little big but does what i need and the best thing it's that the anenometer works :+1:

                                          1 Reply Last reply
                                          0
                                          Reply
                                          • Reply as topic
                                          Log in to reply
                                          • Oldest to Newest
                                          • Newest to Oldest
                                          • Most Votes


                                          16

                                          Online

                                          11.7k

                                          Users

                                          11.2k

                                          Topics

                                          113.0k

                                          Posts


                                          Copyright 2019 TBD   |   Forum Guidelines   |   Privacy Policy   |   Terms of Service
                                          • Login

                                          • Don't have an account? Register

                                          • Login or register to search.
                                          • First post
                                            Last post
                                          0
                                          • MySensors
                                          • OpenHardware.io
                                          • Categories
                                          • Recent
                                          • Tags
                                          • Popular