Skip to content
  • OpenHardware.io
  • Categories
  • Recent
  • Tags
  • Popular
Skins
  • Light
  • Brite
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • Default (No Skin)
  • No Skin
Collapse
Brand Logo
N

Nigel31

@Nigel31
  • Getting Started
  • Controller
  • Build
  • Hardware
  • Download/API
  • Forum
  • Store
About
Posts
85
Topics
19
Shares
0
Groups
0
Followers
0
Following
0

Posts

Recent Best Controversial

  • Sleep3 class to be used with many interrupts
    N Nigel31

    @cvdenzen
    I for one am interested, I have raised issues I have had with sleep, and interrupts in other forum entries.

    Entry here

    Development

  • is there a list of supported MCU platforms?
    N Nigel31

    Thank you all, the last offering is ideal. As it happens, it also covers the device I wish to use, for physical size and program storage capacity. Teensy' 3.2

    Many thanks, look as I might I couldn't find it.

    Hardware

  • What is the correct way to implement a WDT, for reset on a Sleeping node?
    N Nigel31

    RFM69 Series, Signal strength is good, circa -77db.
    When this occurs, the battery is significantly drained, if I don't reset it, This leads me to believe that it is hanging mid process, and leaving the sensors powered.
    The sensors are powered via logic level mosfets, which are controlled via digital pins on the processor.
    As I say, it works fine for weeks on end, then hangs on an indeterminate frequency, this has worked in this fashion for 8 months, the code transmits the data several times for each loop, which is once every 10 mins, I (when I have specifically checked on occasion) get all the transmits of a loop. The ultrasonic sensor, can pull in the order of 60mA, when operating, hence the power mosfet(s).
    I have concluded thus, that the "system" is hanging after the mosfet is enabled, but before it is disabled. There may be myriad reasons as to why, but the system is otherwise OK, when reset, hence the wish to employ a hardware WDT, as the onboard WDT is used by the Sleep function, I don't seem able to employ that, at least I haven't been able to successfully.

    Thus I am asking mysensors people (so to speak) as how I may implement a WDT, other than building a external circuit.

    regards

    Troubleshooting

  • What is the correct way to implement a WDT, for reset on a Sleeping node?
    N Nigel31

    Many thanks, Do you think then that given I wish to remain with a lithium battery, which otherwise has performed suitably, that inclusion of a step-up regulator, to provide a 5v rail for the ultrasonic sensor?
    Do you imagine the battery drain with the additional regulator to be a problem?
    Would you supply the whole system with the stepped up 5v, or just the ultrasonic?
    The radio and temperature sensor are supplied via the 3.3v regulator on the mcu board, the ultrasonic, via a logic level Nch mosfet, fed off the main battery rail.
    The ultrasonic device is supposed to have a supply range of 3.3 - 5.5v

    regards

    Troubleshooting

  • What is the correct way to implement a WDT, for reset on a Sleeping node?
    N Nigel31

    Hi. Power side switching.

    Troubleshooting

  • Problem with Recursive calls on signed node (Solved)
    N Nigel31

    Dear All,
    I have a newish issue with a node, which only seems to have manifested since I upgraded to 2.3.2 on the node (gateway still on 2.2.0)
    The node is my "smart" thermostat, which has been operating at various revision levels for 3 years or more, generally without issue. this node platform is a Teensy 3.2 operating at 24MHz see this post
    Since upgrading to 2.3.2 to "resolve" issues previously encountered forum entry here although this particular node doesn't sleep, I am in the process of migrating nodes to 2.3.2. Subsequent to a code / library version revision to this thermostat node, it has started to "lock up / stop transmitting " of a semi regular basis. I recently asked about determining that a node is "off line" from the nodes perspective here and was spending a few happy hours playing, and was musing about leaving a laptop connected to the serial OP of the node and logging to file the output, to assist in fault finding. whilst doing this I have had the node connected to my PC for several hours, and have seen several occurrances of the situation described here and referenced above.
    example

    6173359 TSF:MSG:READ,0-0-10,s=1,c=3,t=16,pt=0,l=0,sg=0:
    6173369 TSF:MSG:SEND,10-10-0-0,s=255,c=3,t=17,pt=6,l=25,sg=0,ft=1,st=OK:<NONCE>
    6174314 TSF:MSG:READ,0-0-10,s=1,c=1,t=45,pt=0,l=4,sg=1:19.0
    6174316 TSF:MSG:ECHO REQ
    6175680 !TSF:MSG:SEND,10-10-0-0,s=1,c=1,t=45,pt=0,l=4,sg=0,ft=0,st=NACK:19.0
    *InMsgty :45 MsgComd:1 childID:1 Data:S/19.0 Data:I/ 19 Data:B/ 1
     Incoming SET TempSP:19.00
    6176899 !TSF:MSG:SEND,10-10-0-0,s=1,c=1,t=45,pt=7,l=5,sg=0,ft=1,st=NACK:19.0
    TX Error 1
    6176899 !MCO:WAI:RC=1
    6176899 !MCO:PRO:RC=1
    6176899 !MCO:PRO:RC=1
    6176899 !MCO:PRO:RC=1
    6176899 !MCO:PRO:RC=1
    6176899 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    6176900 !MCO:PRO:RC=1
    

    there are THOUSANDS of such lines, sequentially. way too many to put in a post, although I can make the full log available on a file share
    As I understand it this is an issue relating to 2.3.2 and signing.

    Is there any liklyhood of this being resolved (fixed) in the immediate future?
    If not, am I best to roll back to a previous revision of MySensors? If so, which?
    I should obviously prefer NOT to turn off signing for this node.
    The node is currently falling over every day to a week, which is clearly undesirable. This node prior to changing to 2.32. would go for many months, without falling over, the "issues" I have had related to not receiving data in particular (now mostly resolved by workarounds)

    I know this is going to be a awkward issue to help with, bur many thanks in advance...

    Regards
    Nigel

    Troubleshooting

  • Sudden Dead node, and consequent !TSM:FPAR:NO REPLY
    N Nigel31

    Hi all,
    A quick sence check please, before I have to build a new node.
    One of my battery powered PIR sensors in the home, suddenly stopped communicating, node has been in existence for well over 18 months, working flawlessly, no hangups or anything.
    I received a email from my domoticz system, when there had been no coms for a period of time from the node.
    I looked at the reported battery voltage, and thought, ok, time for a recharge (LIPO battery), in fact it's first recharge.
    after charging, nothing, did not show up again in domoticz, so plugged into the pro-mini, to see the serial output, of which there wasn't any, as the debug wasn't enabled. Reflashed code, with debug enabled, and node cannot find any parent? whilst I am going this, I am sat on my sofa, 10 feet from the gateway, and another node which is a repeater. I fiddle with the tx power, to make sure it's now not too high, for its current (temporary location) I try it in it's normal location as well, equally no joy.

    Here is the log, well a bit of it

    60194 TSF:TRI:TSB
    Motion 0
    60246 !MCO:SND:NODE NOT REG
    RAWbatcount :987
    batV :4.10
    batP :88
    60665 !MCO:SND:NODE NOT REG
    60667 !MCO:SND:NODE NOT REG
    Sleep 3000
    60672 MCO:SLP:MS=3000,SMS=0,I1=255,M1=255,I2=255,M2=255
    60678 !MCO:SLP:TNR
    Sleep infinit
    63680 MCO:SLP:MS=3600000,SMS=0,I1=1,M1=1,I2=255,M2=255
    63686 !MCO:SLP:TNR
    66232 TSM:FAIL:RE-INIT
    66234 TSM:INIT
    66236 TSM:INIT:TSP OK
    66240 TSM:INIT:STATID=21
    66242 TSF:SID:OK,ID=21
    66244 TSM:FPAR
    67246 ?TSF:MSG:SEND,21-21-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK:
    69255 !TSM:FPAR:NO REPLY
    69257 TSM:FPAR
    70260 ?TSF:MSG:SEND,21-21-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK:
    72269 !TSM:FPAR:NO REPLY
    72271 TSM:FPAR
    73273 ?TSF:MSG:SEND,21-21-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK:
    73689 MCO:SLP:MS=3589999
    73691 TSF:TDI:TSL
    73693 MCO:SLP:WUP=1
    73695 TSF:TRI:TSB
    Motion 0
    73748 !MCO:SND:NODE NOT REG
    RAWbatcount :987
    batV :4.10
    batP :88
    74166 !MCO:SND:NODE NOT REG
    74168 !MCO:SND:NODE NOT REG
    Sleep 3000
    74172 MCO:SLP:MS=3000,SMS=0,I1=255,M1=255,I2=255,M2=255
    74178 !MCO:SLP:TNR
    75282 !TSM:FPAR:NO REPLY
    75284 TSM:FPAR
    76288 ?TSF:MSG:SEND,21-21-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK:
    Sleep infinit
    77180 MCO:SLP:MS=3600000,SMS=0,I1=1,M1=1,I2=255,M2=255
    77187 !MCO:SLP:TNR
    78297 !TSM:FPAR:FAIL
    78299 TSM:FAIL:CNT=4
    78301 TSM:FAIL:DIS
    78303 TSF:TDI:TSL
    87189 MCO:SLP:MS=3590000
    87191 TSF:TDI:TSL
    

    here is the battery voltage graph before failure
    chart(1).jpeg

    and a switch log, showing the working connection, when the voltage had dropped / dropping.
    pirlog1.jpg

    given that the voltage has dropped very quickly in recent time , see years chart below.
    chart(2).jpeg

    Do people think there has been a catastrophic failure on the radio module (RFM69HW)?
    Here is the sketch, in reflashing this node to enable the debug, the version migrated from 2.2.0 to 2.3.2
    I have also tried clearing the eeprom, and have restarted domoticz.

    // Enable debug prints
    //#define MY_DEBUG
    //#define MY_DEBUG_VERBOSE
    //#define MY_DEBUG_VERBOSE_RFM69
    //#define MY_DEBUG_VERBOSE_SIGNING
    //#define MY_SIGNING_SOFT
    //#define MY_SIGNING_SOFT_RANDOMSEED_PIN 7
    //#define MY_SIGNING_REQUEST_SIGNATURES
    #define   MY_SPLASH_SCREEN_DISABLED
    //#define   MY_DISABLE_RAM_ROUTING_TABLE_FEATURE
    #define MY_TRANSPORT_WAIT_READY_MS 20000
    // Enable and select radio type attached
    //#define MY_REPEATER_FEATURE
    #define MY_RADIO_RFM69
    #define MY_RFM69_FREQUENCY RFM69_433MHZ // Set your frequency here
    //#define MY_RFM69_MAX_POWER_LEVEL_DBM (13)   // max. TX power 10dBm = 10mW
    #define   MY_RFM69_TX_POWER_DBM (13)
    #define MY_IS_RFM69HW // Omit if your RFM is not "H"
    //#define MY_RF69_IRQ_PIN 2
    //#define MY_RFM69_CS_PIN 9 // NSS. Use MY_RF69_SPI_CS for older versions (before 2.2.0)
    //#define MY_RFM69_ENABLE_ENCRYPTION
    //#define MY_RFM69_NETWORKID 100  // Default is 100 in lib. Uncomment it and set your preferred network id if needed
    #define MY_NODE_ID 21
    
    //#include <MyConfig.h>
    //#include <Filter.h>
    #include <MySensors.h>
    //#include <TimeLib.h> 
           
    
    
    //#include <Bounce2.h>
    //#include <avr/wdt.h>
    #include <Vcc.h>
    
    
    #define VCC_MIN 3.0
    #define VCC_MAX 4.25
    Vcc vcc;
    
    
    int rawbatteryLevel = 0;
    int prevbatterylevel=0;
    int scaledbatterylevel = 0;
    uint8_t batP = 100;
    float batV = 3.250;
    int oldBatteryPcnt = 0;
    const float BatVccMin   = 3000;           // Minimum expected Battery Vcc level, in Volts.
    const float BatVccMax   = 4250;        // Maximum expected BatteryVcc level, in Volts.
    const int MaxBattCount = 1023;
    const float BatVccCorrection = 4.15 / 4.18; // Measured Battery Vcc by multimeter divided by reported Vcc
    
    
    
    
    #define CHILD_ID_PRESENCE 4
    #define CHILD_ID_RX_RSSI 5
    #define CHILD_ID_BATVCC 6
    
    
    int BATTERY_SENSE_PIN = A0;  // select the input pin for the battery sense point
    
    const int PresenceDetect = 3; 
    
    const long interval = 20000;   
    
    unsigned long previousMillis,previousrelayMillis,previouprescence= 0;
    unsigned long debouncetime =0;
    
    bool  myprescenceDetected = 0;
    
    bool Relaystate = 0;
    bool uplinkAvailable = true;
    bool requestState;
    bool firstStart = true;
    
    
    
    unsigned long MYsleepTime = 3600000;//SLEEP_SEC*1000 * SLEEP_MINS * 60  ; //period_t is an enum type defined in the LowPower library (LowPower.h)
    
    int sleepcnt =0;
    volatile long currenttime = 0;
    volatile long temptime = 0;
    //long lightLevel = 0;
    
    // Initialize  message
    
    
    
    MyMessage msgPrescenceDetect(CHILD_ID_PRESENCE, V_TRIPPED);
    MyMessage msgRxRSSI(CHILD_ID_RX_RSSI, V_LEVEL);
    MyMessage msgVcc(CHILD_ID_BATVCC, V_VOLTAGE);
    
    
    void setup() {  // put your setup code here, to run once:
    
    
      pinMode(PresenceDetect, INPUT);      // interruptPin
      pinMode(2, INPUT_PULLUP);      // interruptPin2
      EIFR = (1<<INTF0) | (1<<INTF1);// prevent initial trigger, clear interrupt
      wait(100);
      EIFR = (1<<INTF0) | (1<<INTF1);
    //  attachInterrupt(digitalPinToInterrupt(PresenceDetect), prescenceDetected, RISING);
    
     wdt_disable(); // Might be redundant as the bootloader should have done this already
    
    analogReference(INTERNAL);
         
     }//end setup
    
    void presentation() {
      // Send the sketch version information to the gateway and Controller
      sendSketchInfo("Motion Sensor", "1.0.1");
    
    
      // Register all sensors to gw (they will be created as child devices)
     //   present(CHILD_ID_LIGHTLEVEL, S_LIGHT_LEVEL,"LIGHT_LEVEL",true);
     //     wait(250);
        present(CHILD_ID_RX_RSSI, S_SOUND, "Motion RX RSSI",true);
          wait(1000);
          present(CHILD_ID_PRESENCE, S_MOTION, "Prescence", true);
           wait(250);
           present(CHILD_ID_BATVCC, S_MULTIMETER, "Motion Battery V");
      
    }//end presentation
    
    
    
    
    void loop() { // put your main code here, to run repeatedly:
    
    
        // Read digital motion value
        wait(50);// wait a bit, then read in level, avoid spurious noise as PIR holds high state for 27sec
        bool Motion = digitalRead(PresenceDetect) == HIGH;
    
        Serial.print("Motion ");
        Serial.println(Motion);
        send(msgPrescenceDetect.set(Motion?"1":"0"));  // Send tripped value to gw
    
        // get the battery Voltage
        
    
    if(Motion == 0){
      wait(5);
      rawbatteryLevel = analogRead(BATTERY_SENSE_PIN);// 
      if(prevbatterylevel != rawbatteryLevel){
    
      wait(5);
    
        long tempV=0;
        for(int i=1;i<=50;i++){
          wait(5);
          rawbatteryLevel = analogRead(BATTERY_SENSE_PIN);// 
          tempV=tempV + rawbatteryLevel;
        }
          rawbatteryLevel = tempV/50;
          prevbatterylevel = rawbatteryLevel;
      
          float scaledbatterylevel =  map(rawbatteryLevel,0,MaxBattCount,0,BatVccMax );// changed it to milivolts
          float batV = scaledbatterylevel /(1000); // Battery voltage
          uint8_t batP = (((scaledbatterylevel - BatVccMin)*100)/(BatVccMax-BatVccMin)); //((input - min) * 100) / (max - min)
    
         
          #ifdef MY_DEBUG
                              Serial.print("RAWbatcount :");
                                              Serial.println(rawbatteryLevel);
                            Serial.print("batV :");
                                              Serial.println(batV);
                            Serial.print("batP :");
                                              Serial.println(batP);
          #endif
          
          wait(100);
    
                   float volts = vcc.Read_Volts();
                   send(msgVcc.set(batV,2),false);
    
                      if (oldBatteryPcnt != batP) {
                          sendBatteryLevel(batP);
                          oldBatteryPcnt = batP;
                      }
    
         RX_SEND();
      
    }
        
      }
      
        Serial.println("Sleep 3000");
    
    sleep(3000);
        Serial.println("Sleep infinit");
       // EIFR = 1;// clear interrupts
       // EIFR = 2;
        EIFR = (1<<INTF0) | (1<<INTF1);// clear interrupts
    sleep(digitalPinToInterrupt(PresenceDetect), CHANGE, MYsleepTime);
    
    
    
    
    }// end loop
    
    
    
    void receive(const MyMessage &message) {
      // We only expect one type of message from controller. But we better check anyway.
      if (message.isAck()) {
         #ifdef MY_DEBUG
         Serial.println("+Ack FMGW");
         #endif
      }
      
                            #ifdef MY_DEBUG
                                   Serial.print("*InMsgty :");
                                   Serial.print(message.type);
                                   Serial.print(" MsgComd:");
                                   Serial.print(message.getCommand());
                                   Serial.print(" childID:");
                                   Serial.print(message.sensor);
                            
                                   Serial.print(" Switch:");
                                   Serial.println(message.getFloat());
                            #endif
                            
    
      if (message.type == V_STATUS || S_HEATER || V_LIGHT || V_HVAC_SETPOINT_HEAT || V_TEMP || S_HVAC) {
    
    
           if (message.getCommand() == 2){// THIS PROCESSES THE CONTROLLERS EXPECTED STATE OF THE OUTPUT
                           // put code here to be executed when the message is from a request
                            #ifdef MY_DEBUG
                                      Serial.print("REQ_Msg :");
                                      Serial.print(message.type);
                                      Serial.print(" MsgCmd:");
                                      Serial.print(message.getCommand());
                                      Serial.print(" childID:");
                                      Serial.print(message.sensor);
                                      Serial.print(" Switch:");
                                      Serial.println(message.getBool());       
                           #endif
    
                      switch (message.sensor) {// the child ID
    
                        case 1:
                            
                          break;
                             case 6:
                             
      
                              break;
    
                     
    
                                                    
                               
    
                             
                       } // end switch
                                                            
    
    
        
          }// end msg=2
    
            if (message.getCommand() == 1){// THIS PROCESSES DIRECTED COMMANDS
    
              
               #ifdef MY_DEBUG
                                              Serial.print("*InMsgty :");
                                              Serial.print(message.type);
                                              Serial.print(" MsgComd:");
                                              Serial.print(message.getCommand());
                                              Serial.print(" childID:");
                                              Serial.print(message.sensor);
                            
                                              Serial.print(" Switch:");
                                              Serial.println(message.getBool());
               #endif                 
    
             
    
    
                      switch (message.sensor) {// the child ID
    
                        case 1:
                            
                              break;
                              
                             case 3:
                             
                              break;
    
                             case 6:
                             
    
                              break;
                            
                                                           
                             
    
                             
                       } // end switch
    
    
    
                       
              }// end if msg = 1
    
    
        }// end msg type function
    
    }// end void loop
    
    
    void prescenceDetected() { // action when interrupt button doesnt really do anyhing as edge triggered
      currenttime = millis();
      if ((currenttime - debouncetime) > 2000) {
       myprescenceDetected = 1;
    
    
      }
      debouncetime = currenttime;
    }
    
    
    
    void RX_SEND()
    {
    
        send(msgRxRSSI.set(transportGetSignalReport(SR_RX_RSSI)));
    
    }  
    
    
    
    
    
    void sendBatteryReport() {
     
      float p = vcc.Read_Perc(VCC_MIN, VCC_MAX, true);
      int batP = static_cast<int>(p);
    #ifdef MY_DEBUG
      Serial.print("Battery is: "); Serial.println(batP);
    #endif
      sendBatteryLevel(batP);
    }
    
    /*
    
    // This is called when a new time value was received
    void receiveTime(unsigned long controllerTime) {
      // Ok, set incoming time 
      #ifdef MY_DEBUG
        Serial.print("Time value received: ");
      #endif 
    
      if (controllerTime > 1525129200){
     
      setTime(controllerTime);  
        #ifdef MY_DEBUG
            Serial.print("Time value valid: "); 
              Serial.println(controllerTime);
       #endif
    
     // RTC.set(controllerTime); // this sets the RTC to the time from controller - which we do want periodically
      timeReceived = true;
      
      #ifdef MY_DEBUG
                             
             
      Serial.print(hour());
      Serial.print(" ");
      Serial.print(minute());
      Serial.print(" ");
      Serial.print(second());
      Serial.print(" ");
      Serial.print(day());
      Serial.print(" ");
      Serial.print(month());
      Serial.print(" ");
      Serial.print(year()); 
      Serial.println(); 
    
       #endif
     }
      
    }
    */
    

    Any suggestions gratefully received.

    Regards
    Nigel

    Troubleshooting
  • Login

  • Don't have an account? Register

  • Login or register to search.
  • First post
    Last post
0
  • OpenHardware.io
  • Categories
  • Recent
  • Tags
  • Popular