π¬ The Harvester: ultimate power supply for the Raybeacon DK
-
Regarding the hand soldering of itty-bitty components, this inspiring video shows it can be done:
Hand soldering a WLCSP package β 15:38
β mitxela -
I tried soldering wires directly to some femtofet's, but I've concluded they either need to be locked down to a larger substrate with glue or else properly reflowed in an oven. Otherwise, they behave like super energetic tiddly-winks: even the slightest bump when attaching the first wire will make the femtofet jump great distances, most likely never to be found or seen again. :face_with_rolling_eyes: I lost 3 in a row that way, so my next attempt will use glue and very fine wire. I have an idea on how I might pre-align the wires prior to soldering, which is probably necessary in order to hand solder such a tiny thing.
My first attempt at a picoammeter is almost built. Unfortunately, it might might work well only with a DMM and not so well with an o-scope. So, I may have to build something different for that.
-
I have a working picoammeter now:
Because it's a very sensitive measuring instrument, I'm working out how to automate the collection of measurement data so that all measurements of a DUT can be made within a shielded secondary enclosure. -
XC6190 is a voltage detector (1.47v trigger voltage) with what it claims is just a 10na quiescent current. Sounds pretty good to me:
https://www.mouser.com/datasheet/2/760/XC6190-837296.pdf -
Here's a courtesy heads-up.
I just now stumbled across a circuit:

published here:
https://www.edn.com/solar-powered-motor-runs-on-10-na/
that allegedly can operate on as little as 10na while collecting energy, which it then uses to power a small pager motor once a threshold voltage is reached.It also has the virtue of utilizing inexpensive jelly bean parts and not relying on gigaohm resistors, which in the Dave Johnson circuit turned out to be so large that I lack the means to verify their specs through measurement after they are delivered.
This other guy instantiated the circuit as a PCB, and he made the gerber for it available as a free download: https://hackaday.io/project/159691-electron-bucket-extreme-power-management-module
If it turns out to be true that the circuit can both collect the current and trigger at a threshhold voltage all with just 10na of overhead, then on its face it sounds better than the David Johnson circuit turned out to be and possibly also better than many/most/(all?) of the commercial chips that we've reviewed on this thread if paired with an appropriate amorphous solar panel.
Edit:
But wait! There's more. There appears to exist an equivalent single chip voltage detector that also consumes a mere 10na of current: https://www.akm.com/content/dam/documents/products/power-management/power-ic-for-energy-harvesting/ap4405aen/ap4405aen-en-datasheet.pdf
It's itty bitty, so it's probably a great fit for your uber-compact design."But I want more!" I can hear you say. "I want a total step-up solution! And I want one that doesn't use a transformer!" Well, of course you do. Who wouldn't? Apparently, a 0.2v transformerless step-up solution does exist as well. I'm just not sure where. They developed it for a customer who wanted to harvest energy from... bacteria. Actually, the official term is "microbial fuel cell." The chip is the AP4470, and thankfully it can also be powered by solar, without bacteria.
https://solutions.akm.com/us/en/applications/energy-harvesting/
But can we buy it? Or is it just another inaccessible research project? I don't yet know. Can you read Japanese? The trail of bread crumbs written in English seems to run cold after the above link, but there's more about it that's written in Japanese. Argh. -
Gah! I've lost the ball :disappointed:
No progress on discrete harvester, sorry. Also, the PV panels I got earlier were shelved until better times.
I still monitor a couple of the SPV1050 devices though. They're running from various PV panels that I switch from time to time. The load is an nRF52833 beacon and sometimes an IMU broadcasting every one second at 0dBm to 8dBm and reporting voltage of attached ML2032 battery to my phone.
My experience is that a tiny PV panel cannot sustain the device working online. By online I mean that both the device and the harvester power consumption exceeds the panel capabilities, so the battery slowly decays. A bigger panel can address the issue. I still unsure how much we will win if a more efficient online harvester like AEM10941 or even more efficient R1800K will be used. A batch harvester is definitely the way to go.
But how about you? Have you had a chance to build anything yet?
-
Gah! I've lost the ball :disappointed:
No progress on discrete harvester, sorry. Also, the PV panels I got earlier were shelved until better times.
I still monitor a couple of the SPV1050 devices though. They're running from various PV panels that I switch from time to time. The load is an nRF52833 beacon and sometimes an IMU broadcasting every one second at 0dBm to 8dBm and reporting voltage of attached ML2032 battery to my phone.
My experience is that a tiny PV panel cannot sustain the device working online. By online I mean that both the device and the harvester power consumption exceeds the panel capabilities, so the battery slowly decays. A bigger panel can address the issue. I still unsure how much we will win if a more efficient online harvester like AEM10941 or even more efficient R1800K will be used. A batch harvester is definitely the way to go.
But how about you? Have you had a chance to build anything yet?
@Mishka Nice to hear from you again!
When you left I decided to take a break from solar, and so I shifted my attention back to PCB milling, to take advantage of some technological progress now at fruition which resulted in inexpensive, high precision magnetic encoders that have since made cheap closed-loop stepper drivers possible.
As for solar, not sure if you caught it in the news, but worthy of note was the breakthrough announced a few months ago of 6-layer solar cells capable of 39.2% efficiency at 1 sun illumination. For solar PV, that's a monumental breakthrough. The work was done at NREL. So, although that's a very recent breakthrough and not something we can yet buy, I do think we'll be seeing more efficient than usual solar cells within a year that will be hybrid silicon and perovskite, and those will have better efficiencies than what's available now. IIRC, Oxford PV plans to launch production of 400w solar panels at year end, and those will be things that anyone can buy, and so the solar cells in them should be available as well.
-
@Mishka Nice to hear from you again!
When you left I decided to take a break from solar, and so I shifted my attention back to PCB milling, to take advantage of some technological progress now at fruition which resulted in inexpensive, high precision magnetic encoders that have since made cheap closed-loop stepper drivers possible.
As for solar, not sure if you caught it in the news, but worthy of note was the breakthrough announced a few months ago of 6-layer solar cells capable of 39.2% efficiency at 1 sun illumination. For solar PV, that's a monumental breakthrough. The work was done at NREL. So, although that's a very recent breakthrough and not something we can yet buy, I do think we'll be seeing more efficient than usual solar cells within a year that will be hybrid silicon and perovskite, and those will have better efficiencies than what's available now. IIRC, Oxford PV plans to launch production of 400w solar panels at year end, and those will be things that anyone can buy, and so the solar cells in them should be available as well.
Hi @NeverDie,
The 39% is a HUGE!
I think there is must some fundamental limit on how much we can get from these oscillations of the, well, Ether. Or is it the quantum vacuum? Or the strings? Well, the very last name to this kind of shit is the time crystals. And, no matter what the name is, the shit can oscillate, and these oscillations are the essence of the energy. So, while currently most of electronic devices employ electrons as drivers, I'm wondering would it be possible to build an electron-less system where the oscillations (aka waves) may be passed through a number of transformations, and this will bring us to some useful things.
Actually, there is RF and optics which works exactly like that. There is also a number of RF harvesters to collect the energy, but the energy is used mostly to push electrons forward, i.e. produce direct current. That's understandable - most of devices are DC. But creating some kind of a microwave transistor would be just rad.
-
@Mishka Nice to hear from you again!
When you left I decided to take a break from solar, and so I shifted my attention back to PCB milling, to take advantage of some technological progress now at fruition which resulted in inexpensive, high precision magnetic encoders that have since made cheap closed-loop stepper drivers possible.
As for solar, not sure if you caught it in the news, but worthy of note was the breakthrough announced a few months ago of 6-layer solar cells capable of 39.2% efficiency at 1 sun illumination. For solar PV, that's a monumental breakthrough. The work was done at NREL. So, although that's a very recent breakthrough and not something we can yet buy, I do think we'll be seeing more efficient than usual solar cells within a year that will be hybrid silicon and perovskite, and those will have better efficiencies than what's available now. IIRC, Oxford PV plans to launch production of 400w solar panels at year end, and those will be things that anyone can buy, and so the solar cells in them should be available as well.
Regarding the PCB milling, I found myself thinking fairly often about full-cycle manufacturing too :-)
I usually do small boards, up to 4x4 inch. For this size it should be possible to build an affordable, but highly capable machine. Some thoughts on it:
-
High precision. The machine must be able to cut tracks and pads as thin as 6 mils (0.15 mm), but 5 mils would be really nice to achieve. Because of this I'm more inclined to laser cutting. On a milling machine 6 mil gaps between tracks will be hard to do. Another advantage of laser cutting is that it won't tear tiny tracks off the board. Perhaps, even a copper foil can be laser cut. But there's also a spoon of tar: the copper is known to be very reflective and imposes higher requirements to the laser cutter - the price may increase. Another thing to note is that the laser may be not so good at removing large surface areas.
-
Kapton tape for solder mask. For sticky mask to apply, I'm also thinking about some kind of a pallet - this would allow to use cheap polyimide tapes from eBay. Alternatively, non-sticky masks can be laminated. Laminated masks will stick stronger and can be two sided - think of it as about three and more layers. Again, laser cutting is preferred here.
-
Engraving of the silk layer. Laser could be also used for high-res silk layer over the kapton tape. With laser used, the difference in distances from the head to surface because of the copper layer is not an issue. Engraving on both copper and substrate is also possible.
-
Interchangeable heads? Probably, no. The cost of the working head, either laser or milling, will likely dominate over the cost of other components - the machine is small. Seems it's more reasonable to have different machines.
-
Assembly machine. This would be my favorite, but first things first.
-
-
Regarding the PCB milling, I found myself thinking fairly often about full-cycle manufacturing too :-)
I usually do small boards, up to 4x4 inch. For this size it should be possible to build an affordable, but highly capable machine. Some thoughts on it:
-
High precision. The machine must be able to cut tracks and pads as thin as 6 mils (0.15 mm), but 5 mils would be really nice to achieve. Because of this I'm more inclined to laser cutting. On a milling machine 6 mil gaps between tracks will be hard to do. Another advantage of laser cutting is that it won't tear tiny tracks off the board. Perhaps, even a copper foil can be laser cut. But there's also a spoon of tar: the copper is known to be very reflective and imposes higher requirements to the laser cutter - the price may increase. Another thing to note is that the laser may be not so good at removing large surface areas.
-
Kapton tape for solder mask. For sticky mask to apply, I'm also thinking about some kind of a pallet - this would allow to use cheap polyimide tapes from eBay. Alternatively, non-sticky masks can be laminated. Laminated masks will stick stronger and can be two sided - think of it as about three and more layers. Again, laser cutting is preferred here.
-
Engraving of the silk layer. Laser could be also used for high-res silk layer over the kapton tape. With laser used, the difference in distances from the head to surface because of the copper layer is not an issue. Engraving on both copper and substrate is also possible.
-
Interchangeable heads? Probably, no. The cost of the working head, either laser or milling, will likely dominate over the cost of other components - the machine is small. Seems it's more reasonable to have different machines.
-
Assembly machine. This would be my favorite, but first things first.
@Mishka I wouldn't say 6 mil is easy to achieve, but some people claim they can get it on even a sub $200 machine. That was the premise for this other thread that started here: https://forum.mysensors.org/topic/7836/what-did-you-build-today-pictures/161 and then became its own thread here: https://forum.mysensors.org/topic/8735/cnc-pcb-milling
I think for just about everything I do though being able to etch at a 0.4mm lead pitch (that's 0.4mm center to center on the pads) is good enough, and that's a lot easier to achieve. For instance, that's the pitch on an SPV1050 or an nRF52832.
There is industrial equipment that can etch copper PCB directly using a laser, but it must be pricey because I have not read of any hobbyists using it. It would likely require a fiber laser.
-
-
Regarding the PCB milling, I found myself thinking fairly often about full-cycle manufacturing too :-)
I usually do small boards, up to 4x4 inch. For this size it should be possible to build an affordable, but highly capable machine. Some thoughts on it:
-
High precision. The machine must be able to cut tracks and pads as thin as 6 mils (0.15 mm), but 5 mils would be really nice to achieve. Because of this I'm more inclined to laser cutting. On a milling machine 6 mil gaps between tracks will be hard to do. Another advantage of laser cutting is that it won't tear tiny tracks off the board. Perhaps, even a copper foil can be laser cut. But there's also a spoon of tar: the copper is known to be very reflective and imposes higher requirements to the laser cutter - the price may increase. Another thing to note is that the laser may be not so good at removing large surface areas.
-
Kapton tape for solder mask. For sticky mask to apply, I'm also thinking about some kind of a pallet - this would allow to use cheap polyimide tapes from eBay. Alternatively, non-sticky masks can be laminated. Laminated masks will stick stronger and can be two sided - think of it as about three and more layers. Again, laser cutting is preferred here.
-
Engraving of the silk layer. Laser could be also used for high-res silk layer over the kapton tape. With laser used, the difference in distances from the head to surface because of the copper layer is not an issue. Engraving on both copper and substrate is also possible.
-
Interchangeable heads? Probably, no. The cost of the working head, either laser or milling, will likely dominate over the cost of other components - the machine is small. Seems it's more reasonable to have different machines.
-
Assembly machine. This would be my favorite, but first things first.
@Mishka On the other hand, as I just posted on the CNC thread, using a regular etching laser to remove black solder mask above copper pads might be an awesome solution: https://forum.mysensors.org/topic/8735/cnc-pcb-milling/801
At least notionally, it sounds more bullet proof than using a spring bit to grind off the solder mask in those locations without damaging the copper underneath. Maybe even a lower power etching laser (relatively speaking) would suffice for doing it, as long as the beam spot was sufficiently small and sharply defined. -
-
@Mishka On the other hand, as I just posted on the CNC thread, using a regular etching laser to remove black solder mask above copper pads might be an awesome solution: https://forum.mysensors.org/topic/8735/cnc-pcb-milling/801
At least notionally, it sounds more bullet proof than using a spring bit to grind off the solder mask in those locations without damaging the copper underneath. Maybe even a lower power etching laser (relatively speaking) would suffice for doing it, as long as the beam spot was sufficiently small and sharply defined. -
I had thought these energy harvesting chips were kinda pricey, but then I went shopping for a good buck/boost MPPT 12v SLA battery charging chip. I found one that I like called the LT8491 (https://www.analog.com/en/products/lt8491.html#product-overview), but it's priced at $25/chip on both digikey and mouser. The same is true for the somewhat simpler LT8490, which is buck/boost MPPT but without the built-in 12v SLA battery charging features. What's surprising is that aside from those two chips, I haven't found any other MPPT buck/boost chips that seem suitable for charging a 12v battery. At best the other chip solutions are MPPT buck, and far more commonly PWM buck, but in neither case with any boost capability. I wonder why would that be? I bring it up on this thread as a datapoint because it's a similar set of issues, just at 12v instead of the much lower voltages we've been considering. That said, there do exist some MPPT buck/boost solar charge controllers on offer from various vendors, but those prices are around $80 and up, which doesn't make sense for my application, which is keeping my car battery fully charged: during the covid19 apocalypse I'm not doing enough driving to keep it charged in the regular way. At $80+ I' reckon I'd be better off just adding another solar panel behind the windshield and not worrying about MPPT.
-
Art Resin tested a large number of different epoxies, and it seems that all of them yellowed to some degree over time, but some a lot more than others:
Epoxy Resin Yellowing Third Party Testing from ATLAS Labs β 01:46
β ArtResinOf course, since it was a test designed to make Art Resin look good, perhaps they omitted epoxies that really do never yellow. I just don't know which ones those would be. Eight weeks, which was the limit of their study, doesn't seem like a particularly long time.
@NeverDie said in π¬ The Harvester: ultimate power supply for the Raybeacon DK:
Art Resin tested a large number of different epoxies, and it seems that all of them yellowed to some degree over time, but some a lot more than others:
Epoxy Resin Yellowing Third Party Testing from ATLAS Labs β 01:46
β ArtResinOf course, since it was a test designed to make Art Resin look good, perhaps they omitted epoxies that really do never yellow. I just don't know which ones those would be. Eight weeks, which was the limit of their study, doesn't seem like a particularly long time.
Reporting back on this: after looking into this further, it turns out there are a wide range of factors that need to be evaluated in order to pick the right encapsulate to use. Some of those factors are sumarized here: http://www.strsolar.com/UploadedFiles/Files/STR_Protected.pdf by STR, a company that has done basic research into how best to prevent yellowing. They've been running weathering tests in Arizona for over 22 years now to see what works and what doesn't. However, it's even more complicated than that: you need to test the entire assembly and also its location (e.g. on a hot roof or on open backed panels on the ground) because both strongly influence the outcome. Also, and perhaps even more significantly, and as described in this paper here: https://www.researchgate.net/publication/271553442_Discoloration_of_PV_encapsulants
they got their best results when using a particular low-iron glass known as Solite that was doped with Ce,.
In contrast, things went much worse when they tried using a low-iron glass (such as Starlight) which wasn't doped with Ce. The trouble is, according to the linked paper: neither Solite nor any other similar glass doped with Ce is commercially available anymore. As you can tell from the marketing material linked above, that fact seems to be completely glossed over, leading most people into thinking that STR had solved the problem and all you have to do is buy the STR encapsulant. As a result, I'm not sure whether any of the current encapsulant formulations will be successful in the longer-term at avoiding yellowing. Perhaps there have been further improvements since 2013, but if so, what are they? Anyhow, what's clear is that without hard empirical performance data with regard to a particular solar assembly, it becomes very easy to draw incorrect conclusions about what works best and what doesn't. -
@Mishka said in π¬ The Harvester: ultimate power supply for the Raybeacon DK:
@NeverDie Cutting panels should just work. I'm unsure how do you attach wires to it though. I'll be grateful if you will share your findings.
Closing the loop on your question, it looks as though they can be cut:
https://www.ebay.com/itm/0-5W-0-5V-High-Efficiency-Back-Contact-DIY-1-6-Cut-Sunpower-Solar-Cell-36pcs-lot/291858971298?hash=item43f4267aa2:g:hsAAAOSwxp9W5tui
I've read that cutting them with a laser is the recommended method. I only just came across this, and I haven't yet found a vendor selling just one solarpower solar cell lasercut into six pieces like that yet, although the above ebay auction demonstrates that you can buy them in bulk that way.@NeverDie said in π¬ The Harvester: ultimate power supply for the Raybeacon DK:
@Mishka said in π¬ The Harvester: ultimate power supply for the Raybeacon DK:
@NeverDie Cutting panels should just work. I'm unsure how do you attach wires to it though. I'll be grateful if you will share your findings.
Closing the loop on your question, it looks as though they can be cut:
https://www.ebay.com/itm/0-5W-0-5V-High-Efficiency-Back-Contact-DIY-1-6-Cut-Sunpower-Solar-Cell-36pcs-lot/291858971298?hash=item43f4267aa2:g:hsAAAOSwxp9W5tui
I've read that cutting them with a laser is the recommended method. I only just came across this, and I haven't yet found a vendor selling just one solarpower solar cell lasercut into six pieces like that yet, although the above ebay auction demonstrates that you can buy them in bulk that way.Closing the loop even further, I received one of these 50 watt panels:

As you might be able to guess from the photo, and I'm able to confirm because I can see it up close, every single solar cell was cut in half prior to assembly. It looks as though Sunpower then used some kind of conductive tape (?) to make the electrical connections from one cell to the next. Or perhaps a flex cable of some kind? Then the whole layout was sent through a laminator. Seems as though it would be very efficient to manufacture. I'm impressed that 50 watts can be produced by such a relatively small assemblage. Hopefully Sunpower picked materials that won't yellow or brown with sun exposure and time! If so, then this might be better than most of what is commercially available, let alone the solar cell encapsulations from aliexpress that last only a few months in direct sunlight before they become so opaque as to be unuseable. -
Julien stumbled across an inexpensive PFM boost converter board which he demonstrates is able to boost 65mv up enough to light a red LED:
eBay Cheap & Cheerful: #3 - DC/DC Boost Module 5V Out β 07:44
β Julian IlettI can't discern from the video what the minimum start-up voltage was, but it's quite a surprising finding anyway, because on its face it would appear to outperform most of even the energy harvesting chips on the market with respect to minimum operating voltage!
Edit: In a subsequent video, Julien found that the start-up voltage was 560mv (the datasheet only promises 0.9v as the minimum, so maybe Julien got lucky with his particular device):
Update: Cheap 5V Boost Converter Performance β 06:58
β Julian Ilettbut he's able to keep it running (albeit with just a 1.2v output and little to no load) on what he says is an input voltage of as little as 10mv. That matters because by keeping it running it sidesteps the start-up voltage requirement, and if the input voltage rises it can start being useful much sooner than having to wait for a minimum 0.56v input voltage to be reached. What would be interesting to know is just how much power is required to keep it running, even if only just for this purpose.
The switching chip is the E50D, which Julien's research indicates may be a CE8301.
-
I've confirmed Julien's results. I procured a board that's inferior to his but with the same chip on it, and with no load other than its LED it can remain operational as low as 15mv. With that as the input voltage, the output voltage is around 640mv, so I think the reason my board can't survive on less than 15mv is that when the output voltage dips below about 600mv then the chip no longer has enough voltage to switch. Compared to other off-the-shelf chips, this is an impressive result, and even more so considering that these chips only cost around 8 cents each in small quantities.
Edit: This guy found another couple of possibilities as to what the E50D chip might be: https://www.electroschematics.com/pfm-module-circuit-surgery/
-
I've confirmed Julien's results. I procured a board that's inferior to his but with the same chip on it, and with no load other than its LED it can remain operational as low as 15mv. With that as the input voltage, the output voltage is around 640mv, so I think the reason my board can't survive on less than 15mv is that when the output voltage dips below about 600mv then the chip no longer has enough voltage to switch. Compared to other off-the-shelf chips, this is an impressive result, and even more so considering that these chips only cost around 8 cents each in small quantities.
Edit: This guy found another couple of possibilities as to what the E50D chip might be: https://www.electroschematics.com/pfm-module-circuit-surgery/
@NeverDie said in π¬ The Harvester: ultimate power supply for the Raybeacon DK:
Edit: This guy found another couple of possibilities as to what the E50D chip might be: https://www.electroschematics.com/pfm-module-circuit-surgery/
I have the same board as this guy. I removed the LED and resistor because they are on the input side, so they are almost useless anyway. For a board such as this, with a promised 0.9v startup voltage on the input side and a promised 5v on the output side, they really should have been attached to the output, not the input, to show roughly when it is that the board is producing useable output.
At a 20mv "keep alive" input voltage, the input measures 0.5ma using a uCurrent Gold. That means the keep alive energy is 10 microWatts. Offhand, for the application we've been discussing on this thread, I suspect that number is too high to be practically useful, because at only 20mv input we'd be collecting far less than 0.5ma current from a tiny panel. At least now we know.