MySensors weather station
-
Hello, @dbemowsk
You should use the built in method from the MySensors library to do that :
https://www.mysensors.org/download/sensor_api_20#saving-state -
Hello, @dbemowsk
You should use the built in method from the MySensors library to do that :
https://www.mysensors.org/download/sensor_api_20#saving-state@Nca78 So my values are from 0 to 360, looking at the link you posted, the value that you save to an address is uint8_t which is equivalent to a byte (0 to 255). Is there a way to store a word value (uint16_t), or do I need to break the value into two bytes and store those into two positions?
-
@Nca78 So my values are from 0 to 360, looking at the link you posted, the value that you save to an address is uint8_t which is equivalent to a byte (0 to 255). Is there a way to store a word value (uint16_t), or do I need to break the value into two bytes and store those into two positions?
@dbemowsk said in MySensors weather station:
@Nca78 So my values are from 0 to 360, looking at the link you posted, the value that you save to an address is uint8_t which is equivalent to a byte (0 to 255). Is there a way to store a word value (uint16_t), or do I need to break the value into two bytes and store those into two positions?
Yes it can only store bytes, but it's not a big deal to make a method to read/write values on 2 bytes.
Else you can just keep a precision of 2° and divide by 2 to get a 0=>180 value ;) -
Precision of 2° I believe it's enough as many weather stations provide just the 8 general directions
-
@gohan It does, but it is an untested library. This is the test code that I ran using that library:
#include "AS5047.h" #include <SPI.h> #include <EEPROM.h> #define SWITCH_PIN 7 //The north calibration switch AS5047 myAS5047(5); // SS pin int address = 0; //EEPROM address counter int north_offset = 0; long value; int dir; bool button; void setup() { SPI.begin; Serial.begin(9600); pinMode(SWITCH_PIN, INPUT_PULLUP); north_offset = EEPROM.read(address); } void loop() { value=(360*myAS5047.sensor_read())/16383; dir = ((value - north_offset) < 0) ? 360 - abs(value - north_offset) : value - north_offset; Serial.print("measured direction: "); Serial.println(dir); Serial.print("north_offset: "); Serial.println(north_offset); button = digitalRead(SWITCH_PIN); north_offset = EEPROM.read(address); if (!button && north_offset != value) { EEPROM.write(address, value); north_offset = value; Serial.println("Button pressed"); } delay(1000); }This test worked fine, now I am trying to merge this with my weather station sketch. I am not very familiar with working with SPI. In the setup() method, they call SPI.begin(). I am just trying to figure out what I need to do for merging the code.
-
So now I have the direction sensor on the SPI bus with the CS pin connected to D5 on my easy newbie board. If I run my sample program for the direction sensor to test it on the bus with the nRF24 radio, I get readings and it seems to work fine. The problem is, if I run my modified rain sensor sketch seen below, I cannot get the radio to work.
/* Arduino Tipping Bucket Rain Gauge April 26, 2015 Version 2.0 Arduino Tipping Bucket Rain Gauge Utilizing a tipping bucket sensor, your Vera home automation controller and the MySensors.org gateway you can measure and sense local rain. This sketch will create two devices on your Vera controller. One will display your total precipitation for the last 5 days. The other, a sensor that changes state if there is recent rain (up to last 120 hours) above a threshold. Both these settings are user definable. There is a build overview video here: https://youtu.be/1eMfKQaLROo This sketch features the following: * Allows you to set the rain threshold in mm * Allows you to determine the tripped indicator window up to 120 hours. * Displays the last 5 days of rain in Variable1 through Variable5 of the Rain Sensor device * Configuration changes to Sensor device updated every hour * Should run on any Arduino * Will retain Tripped/Not Tripped status and data in a power interruption, saving small amount of data to EEPROM (Circular Buffer to maximize life of EEPROM) * LED status indicator * Optional Temp/Humidity (DHT-22 or DHT-11) and Light LUX (BH1750) sensors. To use, uncomment #define DHT_ON and/or #define LUX_ON * Optionally send total accumulation of each day's rainfall or send only individual days rainfall totals. Uncomment #define USE_DAILY to display individual daily rainfall. If it is commented out it will display a cumulative total rainfall (day4 = day1+day2+day3+day4 etc) by @BulldogLowell and @PeteWill for free public use */ #define MY_DEBUG // Enable MySensors debug prints to serial monitor // Enable and select radio type attached #define MY_RADIO_NRF24 //#define MY_RADIO_RFM69 //#define MY_NODE_ID 7 //uncomment this line to assign a static ID #include <SPI.h> #include <math.h> #include <TimeLib.h> #include "AS5047.h" #include <MySensors.h> #define SKETCH_NAME "Weather Station" #define SKETCH_VERSION "2.0" #define DWELL_TIME 40 // this allows for radio to come back to power after a transmission, ideally 0 //#define DEBUG_ON // Rain gauge specific debug messages. #define DHT_ON // uncomment out this line to enable DHT sensor //#define LUX_ON // uncomment out this line to enable BH1750 sensor //#define USE_DAILY // Uncomment to display individual daily rainfall totals in the variables sent to your controller. If it's commented it will add each day to the next for a cumulative total. #define NORTH_SWITCH_PIN 7 //The north calibration switch #define AS5047_CHIP_SELECT_PIN 5 //The north calibration switch #define TIP_SENSOR_PIN 2 //The tipping bucket rain sensor #define CALIBRATE_FACTOR 60 // amount of rain per rain bucket tip e.g. 5 is .05mm #define DHT_LUX_DELAY 300000 //Delay in milliseconds that the DHT and LUX sensors will wait before sending data #define WIND_DIR_DELAY 300000 //Delay in milliseconds that the DHT and LUX sensors will wait before sending data #define CHILD_ID_RAIN_LOG 3 // Keeps track of accumulated rainfall #define CHILD_ID_TRIPPED_INDICATOR 4 // Indicates Tripped when rain detected #define CHILD_ID_WIND 5 // Indicates Tripped when rain detected #define EEPROM_NORTH_OFFSET_LOCATION 0 // location of the EEPROM circular buffer #define EEPROM_BUFFER_LOCATION 1 // location of the EEPROM circular buffer #define E_BUFFER_LENGTH 240 #define RAIN_BUCKET_SIZE 120 #ifdef DEBUG_ON #define DEBUG_PRINT(x) Serial.print(x) #define DEBUG_PRINTLN(x) Serial.println(x) #define SERIAL_START(x) Serial.begin(x) #else #define DEBUG_PRINT(x) #define DEBUG_PRINTLN(x) #define SERIAL_START(x) #endif // MyMessage msgRainRate(CHILD_ID_RAIN_LOG, V_RAINRATE); MyMessage msgRain(CHILD_ID_RAIN_LOG, V_RAIN); // MyMessage msgRainVAR1(CHILD_ID_RAIN_LOG, V_VAR1); MyMessage msgRainVAR2(CHILD_ID_RAIN_LOG, V_VAR2); MyMessage msgRainVAR3(CHILD_ID_RAIN_LOG, V_VAR3); MyMessage msgRainVAR4(CHILD_ID_RAIN_LOG, V_VAR4); MyMessage msgRainVAR5(CHILD_ID_RAIN_LOG, V_VAR5); // MyMessage msgTripped(CHILD_ID_TRIPPED_INDICATOR, V_TRIPPED); MyMessage msgTrippedVar1(CHILD_ID_TRIPPED_INDICATOR, V_VAR1); MyMessage msgTrippedVar2(CHILD_ID_TRIPPED_INDICATOR, V_VAR2); MyMessage msgWindSpeed(CHILD_ID_WIND, V_WIND); MyMessage msgWindGust(CHILD_ID_WIND, V_GUST); MyMessage msgWindDirection(CHILD_ID_WIND, V_DIRECTION); // #ifdef DHT_ON #include <DHT.h> #define CHILD_ID_HUM 0 #define CHILD_ID_TEMP 1 #define HUMIDITY_SENSOR_DIGITAL_PIN 3 DHT dht; float lastTemp; float lastHum; bool metric = false; MyMessage msgHum(CHILD_ID_HUM, V_HUM); MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP); #endif // #ifdef LUX_ON //BH1750 is connected to SCL (analog input A5) and SDA (analog input A4) #include <BH1750.h> #include <Wire.h> #define CHILD_ID_LIGHT 2 BH1750 lightSensor; MyMessage msg(CHILD_ID_LIGHT, V_LIGHT_LEVEL); unsigned int lastlux; uint8_t heartbeat = 10; //Used to send the light lux to gateway as soon as the device is restarted and after the DHT_LUX_DELAY has happened 10 times #endif AS5047 myAS5047(5); //AS5047_CHIP_SELECT_PIN); //Wind direction magnetic position sensor uint8_t north_offset; bool button; int wind_direction; int last_direction; unsigned long sensorPreviousMillis; unsigned long windDirPreviousMillis; int eepromIndex; int tipSensorPin = 3; // Pin the tipping bucket is connected to. Must be interrupt capable pin int ledPin = 5; // Pin the LED is connected to. PWM capable pin required #ifdef DEBUG_ON unsigned long dataMillis; unsigned long serialInterval = 600000UL; #endif const unsigned long oneHour = 3600000UL; unsigned long lastTipTime; unsigned long lastRainTime; //Used for rainRate calculation unsigned int rainBucket [RAIN_BUCKET_SIZE] ; /* 24 hours x 5 Days = 120 hours */ unsigned int rainRate = 0; uint8_t rainWindow = 72; //default rain window in hours. Will be overwritten with msgTrippedVar1. volatile int wasTippedBuffer = 0; int rainSensorThreshold = 50; //default rain sensor sensitivity in hundredths. Will be overwritten with msgTrippedVar2. uint8_t state = 0; uint8_t oldState = 2; //Setting the default to something other than 1 or 0 unsigned int lastRainRate = 0; int lastMeasure = 0; bool gotTime = false; uint8_t lastHour; uint8_t currentHour; // void presentation() { // Register all sensors to gw (they will be created as child devices) sendSketchInfo(SKETCH_NAME, SKETCH_VERSION); wait(DWELL_TIME); present(CHILD_ID_RAIN_LOG, S_RAIN); wait(DWELL_TIME); present(CHILD_ID_TRIPPED_INDICATOR, S_MOTION); wait(DWELL_TIME); present(CHILD_ID_WIND, S_WIND); wait(DWELL_TIME); #ifdef DHT_ON present(CHILD_ID_HUM, S_HUM); wait(DWELL_TIME); present(CHILD_ID_TEMP, S_TEMP); wait(DWELL_TIME); #endif #ifdef LUX_ON present(CHILD_ID_LIGHT, S_LIGHT_LEVEL); #endif DEBUG_PRINTLN(F("Sensor Presentation Complete")); } void setup() { #ifndef MY_DEBUG SERIAL_START(115200); //Start serial if MySensors debugging isn't enabled #endif // pinMode(NORTH_SWITCH_PIN, INPUT_PULLUP); // Set up the IO pinMode(TIP_SENSOR_PIN, INPUT_PULLUP); attachInterrupt (digitalPinToInterrupt(TIP_SENSOR_PIN), sensorTipped, FALLING); // depending on location of the hall effect sensor may need CHANGE pinMode(ledPin, OUTPUT); digitalWrite(ledPin, HIGH); // //Sync time with the server // unsigned long functionTimeout = millis(); while (timeStatus() == timeNotSet && millis() - functionTimeout < 30000UL) { requestTime(); DEBUG_PRINTLN(F("Getting Time")); wait(1000); // call once per second DEBUG_PRINTLN(F(".")); } currentHour = hour(); lastHour = hour(); // //retrieve from EEPROM stored values on a power cycle. // //Get the north offset direction north_offset = loadState(EEPROM_NORTH_OFFSET_LOCATION)*2; bool isDataOnEeprom = false; for (int i = 0; i < E_BUFFER_LENGTH; i++) { uint8_t locator = loadState(EEPROM_BUFFER_LOCATION + i); if (locator == 0xFE) // found the EEPROM circular buffer index { eepromIndex = EEPROM_BUFFER_LOCATION + i; DEBUG_PRINT(F("EEPROM Index ")); DEBUG_PRINTLN(eepromIndex); //Now that we have the buffer index let's populate the rainBucket[] with data from eeprom loadRainArray(eepromIndex); isDataOnEeprom = true; break; } } // if (!isDataOnEeprom) // Added for the first time it is run on a new Arduino { DEBUG_PRINTLN(F("I didn't find valid EEPROM Index, so I'm writing one to location 0")); eepromIndex = EEPROM_BUFFER_LOCATION; saveState(eepromIndex, 0xFE); saveState(eepromIndex + 1, 0xFE); //then I will clear out any bad data for (int i = 2; i <= E_BUFFER_LENGTH; i++) { saveState(i, 0x00); } } #ifdef DEBUG_ON dataMillis = millis(); #endif lastTipTime = millis(); // request(CHILD_ID_TRIPPED_INDICATOR, V_VAR1); wait(DWELL_TIME); request(CHILD_ID_TRIPPED_INDICATOR, V_VAR2); wait(DWELL_TIME); // #ifdef DHT_ON dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN); metric = getConfig().isMetric; //metric = false; wait(DWELL_TIME); #endif // #ifdef LUX_ON lightSensor.begin(); #endif // transmitRainData(); //Setup complete send any data loaded from eeprom to gateway } void loop() { if (state) { prettyFade(); // breathe if tripped } else { slowFlash(); // blink if not tripped } #ifdef DEBUG_ON // Serial Debug Block if ( (millis() - dataMillis) >= serialInterval) { for (int i = 24; i <= 120; i = i + 24) { updateSerialData(i); } dataMillis = millis(); } #endif //NORTH_SWITCH_PIN button = digitalRead(NORTH_SWITCH_PIN); if (!button) { setNorthOffset(); } // // let's constantly check to see if the rain in the past rainWindow hours is greater than rainSensorThreshold // int measure = 0; // Check to see if we need to show sensor tripped in this block for (int i = 0; i < rainWindow; i++) { measure += rainBucket [i]; if (measure != lastMeasure) { // DEBUG_PRINT(F("measure value (total rainBucket within rainWindow): ")); // DEBUG_PRINTLN(measure); lastMeasure = measure; } } // state = (measure >= (rainSensorThreshold * 100)); if (state != oldState) { send(msgTripped.set(state)); wait(DWELL_TIME); DEBUG_PRINT(F("New Sensor State... Sensor: ")); DEBUG_PRINTLN(state ? "Tripped" : "Not Tripped"); oldState = state; } //WIND_DIR_DELAY if (millis() - windDirPreviousMillis > WIND_DIR_DELAY) { wind_direction = getWindDirection(); if (wind_direction != last_direction) { send(msgWindDirection.set(wind_direction)); } last_direction = wind_direction; windDirPreviousMillis = millis(); } // unsigned long tipDelay = millis() - lastRainTime; if (wasTippedBuffer) // if was tipped, then update the 24hour total and transmit to Vera { DEBUG_PRINTLN(F("Sensor Tipped")); DEBUG_PRINT(F("rainBucket [0] value: ")); DEBUG_PRINTLN(rainBucket [0]); send(msgRain.set((float)rainTotal(currentHour) / 100, 1)); //Calculate the total rain for the day wait(DWELL_TIME); wasTippedBuffer--; rainRate = ((oneHour) / tipDelay); if (rainRate != lastRainRate) { send(msgRainRate.set(rainRate, 1)); wait(DWELL_TIME); DEBUG_PRINT(F("RainRate= ")); DEBUG_PRINTLN(rainRate); lastRainRate = rainRate; } lastRainTime = lastTipTime; } // currentHour = hour(); if (currentHour != lastHour) { DEBUG_PRINTLN(F("One hour elapsed.")); send(msgRain.set((float)rainTotal(currentHour) / 100, 1)); // send today's rainfall wait(DWELL_TIME); saveState(eepromIndex, highByte(rainBucket[0])); saveState(eepromIndex + 1, lowByte(rainBucket[0])); DEBUG_PRINT(F("Saving rainBucket[0] to eeprom. rainBucket[0] = ")); DEBUG_PRINTLN(rainBucket[0]); for (int i = RAIN_BUCKET_SIZE - 1; i >= 0; i--)//cascade an hour of values back into the array { rainBucket [i + 1] = rainBucket [i]; } request(CHILD_ID_TRIPPED_INDICATOR, V_VAR1); wait(DWELL_TIME); request(CHILD_ID_TRIPPED_INDICATOR, V_VAR2); wait(DWELL_TIME); rainBucket[0] = 0; eepromIndex = eepromIndex + 2; if (eepromIndex > EEPROM_BUFFER_LOCATION + E_BUFFER_LENGTH) { eepromIndex = EEPROM_BUFFER_LOCATION; } DEBUG_PRINT(F("Writing to EEPROM. Index: ")); DEBUG_PRINTLN(eepromIndex); saveState(eepromIndex, 0xFE); saveState(eepromIndex + 1, 0xFE); requestTime(); // sync the time every hour wait(DWELL_TIME); transmitRainData(); rainRate = 0; send(msgRainRate.set(rainRate, 1)); wait(DWELL_TIME); DEBUG_PRINTLN(F("Sending rainRate is 0 to controller")); lastHour = hour(); } if (millis() - sensorPreviousMillis > DHT_LUX_DELAY) { #ifdef DHT_ON //DHT Code doDHT(); #endif #ifdef LUX_ON doLUX(); #endif sensorPreviousMillis = millis(); } } int getWindDirection() { north_offset = loadState(EEPROM_NORTH_OFFSET_LOCATION); int value = readDir(); int dir = ((value - north_offset) < 0) ? 360 - abs(value - north_offset) : value - north_offset; DEBUG_PRINT("Wind direction: "); DEBUG_PRINTLN(dir); return dir; } // void setNorthOffset() { int value = readDir(); if (north_offset != value) { saveState(EEPROM_NORTH_OFFSET_LOCATION, value/2); north_offset = value; DEBUG_PRINT("North offset set to: "); DEBUG_PRINTLN(value/2); } } int readDir() { int value = (359*myAS5047.sensor_read())/16383; return value; } // #ifdef DHT_ON void doDHT(void) { float temperature = dht.getTemperature(); if (isnan(temperature)) { DEBUG_PRINTLN(F("Failed reading temperature from DHT")); } else if (temperature != lastTemp) { lastTemp = temperature; if (!metric) { temperature = dht.toFahrenheit(temperature); } send(msgTemp.set(temperature, 1)); wait(DWELL_TIME); DEBUG_PRINT(F("Temperature is: ")); DEBUG_PRINTLN(temperature); } float humidity = dht.getHumidity();; if (isnan(humidity)) { DEBUG_PRINTLN(F("Failed reading humidity from DHT")); } else if (humidity != lastHum) { lastHum = humidity; send(msgHum.set(humidity, 1)); wait(DWELL_TIME); DEBUG_PRINT(F("Humidity is: ")); DEBUG_PRINTLN(humidity); } } #endif // #ifdef LUX_ON void doLUX(void) { unsigned int lux = lightSensor.readLightLevel();// Get Lux value DEBUG_PRINT(F("Current LUX Level: ")); DEBUG_PRINTLN(lux); heartbeat++; if (lux != lastlux || heartbeat > 10) { send(msg.set(lux)); lastlux = lux; } if (heartbeat > 10) { heartbeat = 0; } } #endif // void sensorTipped() { unsigned long thisTipTime = millis(); if (thisTipTime - lastTipTime > 100UL) { rainBucket[0] += CALIBRATE_FACTOR; // adds CALIBRATE_FACTOR hundredths of unit each tip wasTippedBuffer++; } lastTipTime = thisTipTime; } // int rainTotal(int hours) { int total = 0; for ( int i = 0; i <= hours; i++) { total += rainBucket [i]; } return total; } #ifdef DEBUG_ON void updateSerialData(int x) { DEBUG_PRINT(F("Rain last ")); DEBUG_PRINT(x); DEBUG_PRINTLN(F(" hours: ")); float tipCount = 0; for (int i = 0; i < x; i++) { tipCount = tipCount + rainBucket [i]; } tipCount = tipCount / 100; DEBUG_PRINTLN(tipCount); } #endif void loadRainArray(int eValue) // retrieve stored rain array from EEPROM on powerup { for (int i = 1; i < RAIN_BUCKET_SIZE; i++) { eValue = eValue - 2; if (eValue < EEPROM_BUFFER_LOCATION) { eValue = EEPROM_BUFFER_LOCATION + E_BUFFER_LENGTH; } DEBUG_PRINT(F("EEPROM location: ")); DEBUG_PRINTLN(eValue); uint8_t rainValueHigh = loadState(eValue); uint8_t rainValueLow = loadState(eValue + 1); unsigned int rainValue = rainValueHigh << 8; rainValue |= rainValueLow; rainBucket[i] = rainValue; // DEBUG_PRINT(F("rainBucket[ value: ")); DEBUG_PRINT(i); DEBUG_PRINT(F("] value: ")); DEBUG_PRINTLN(rainBucket[i]); } } void transmitRainData(void) { DEBUG_PRINT(F("In transmitRainData. currentHour = ")); DEBUG_PRINTLN(currentHour); int rainUpdateTotal = 0; for (int i = currentHour; i >= 0; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 1: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR1.set((float)rainUpdateTotal / 100.0, 1)); //Send current day rain totals (resets at midnight) wait(DWELL_TIME); #ifdef USE_DAILY rainUpdateTotal = 0; #endif for (int i = currentHour + 24; i > currentHour; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 2: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR2.set((float)rainUpdateTotal / 100.0, 1)); wait(DWELL_TIME); #ifdef USE_DAILY rainUpdateTotal = 0; #endif for (int i = currentHour + 48; i > currentHour + 24; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 3: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR3.set((float)rainUpdateTotal / 100.0, 1)); wait(DWELL_TIME); #ifdef USE_DAILY rainUpdateTotal = 0; #endif for (int i = currentHour + 72; i > currentHour + 48; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 4: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR4.set((float)rainUpdateTotal / 100.0, 1)); wait(DWELL_TIME); #ifdef USE_DAILY rainUpdateTotal = 0; #endif for (int i = currentHour + 96; i > currentHour + 72; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 5: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR5.set((float)rainUpdateTotal / 100.0, 1)); wait(DWELL_TIME); } void receive(const MyMessage &message) { if (message.sensor == CHILD_ID_RAIN_LOG) { // nothing to do here } else if (message.sensor == CHILD_ID_TRIPPED_INDICATOR) { if (message.type == V_VAR1) { rainWindow = atoi(message.data); if (rainWindow > 120) { rainWindow = 120; } else if (rainWindow < 1) { rainWindow = 1; } if (rainWindow != atoi(message.data)) // if I changed the value back inside the boundries, push that number back to Vera { send(msgTrippedVar1.set(rainWindow)); } } else if (message.type == V_VAR2) { rainSensorThreshold = atoi(message.data); if (rainSensorThreshold > 10000) { rainSensorThreshold = 10000; } else if (rainSensorThreshold < 1) { rainSensorThreshold = 1; } if (rainSensorThreshold != atoi(message.data)) // if I changed the value back inside the boundries, push that number back to Vera { send(msgTrippedVar2.set(rainSensorThreshold)); } } } } void prettyFade(void) { float val = (exp(sin(millis() / 2000.0 * PI)) - 0.36787944) * 108.0; analogWrite(ledPin, val); } void slowFlash(void) { static bool ledState = true; static unsigned long pulseStart = millis(); if (millis() - pulseStart < 100UL) { digitalWrite(ledPin, !ledState); pulseStart = millis(); } } void receiveTime(unsigned long newTime) { DEBUG_PRINTLN(F("Time received...")); setTime(newTime); char theTime[6]; sprintf(theTime, "%d:%2d", hour(), minute()); DEBUG_PRINTLN(theTime); }These are the errors that I get when I try to run the code:
Starting sensor (RNNNA-, 2.0.0) TSM:INIT !TSM:RADIO:FAIL !TSM:FAILURE TSM:PDTIf I disconnect the direction sensor and start it, the radio works fine. The odd thing is that when I run the test code for the direction sensor with the radio connected to the bus, that works fine.
Any ideas?
-
So now I have the direction sensor on the SPI bus with the CS pin connected to D5 on my easy newbie board. If I run my sample program for the direction sensor to test it on the bus with the nRF24 radio, I get readings and it seems to work fine. The problem is, if I run my modified rain sensor sketch seen below, I cannot get the radio to work.
/* Arduino Tipping Bucket Rain Gauge April 26, 2015 Version 2.0 Arduino Tipping Bucket Rain Gauge Utilizing a tipping bucket sensor, your Vera home automation controller and the MySensors.org gateway you can measure and sense local rain. This sketch will create two devices on your Vera controller. One will display your total precipitation for the last 5 days. The other, a sensor that changes state if there is recent rain (up to last 120 hours) above a threshold. Both these settings are user definable. There is a build overview video here: https://youtu.be/1eMfKQaLROo This sketch features the following: * Allows you to set the rain threshold in mm * Allows you to determine the tripped indicator window up to 120 hours. * Displays the last 5 days of rain in Variable1 through Variable5 of the Rain Sensor device * Configuration changes to Sensor device updated every hour * Should run on any Arduino * Will retain Tripped/Not Tripped status and data in a power interruption, saving small amount of data to EEPROM (Circular Buffer to maximize life of EEPROM) * LED status indicator * Optional Temp/Humidity (DHT-22 or DHT-11) and Light LUX (BH1750) sensors. To use, uncomment #define DHT_ON and/or #define LUX_ON * Optionally send total accumulation of each day's rainfall or send only individual days rainfall totals. Uncomment #define USE_DAILY to display individual daily rainfall. If it is commented out it will display a cumulative total rainfall (day4 = day1+day2+day3+day4 etc) by @BulldogLowell and @PeteWill for free public use */ #define MY_DEBUG // Enable MySensors debug prints to serial monitor // Enable and select radio type attached #define MY_RADIO_NRF24 //#define MY_RADIO_RFM69 //#define MY_NODE_ID 7 //uncomment this line to assign a static ID #include <SPI.h> #include <math.h> #include <TimeLib.h> #include "AS5047.h" #include <MySensors.h> #define SKETCH_NAME "Weather Station" #define SKETCH_VERSION "2.0" #define DWELL_TIME 40 // this allows for radio to come back to power after a transmission, ideally 0 //#define DEBUG_ON // Rain gauge specific debug messages. #define DHT_ON // uncomment out this line to enable DHT sensor //#define LUX_ON // uncomment out this line to enable BH1750 sensor //#define USE_DAILY // Uncomment to display individual daily rainfall totals in the variables sent to your controller. If it's commented it will add each day to the next for a cumulative total. #define NORTH_SWITCH_PIN 7 //The north calibration switch #define AS5047_CHIP_SELECT_PIN 5 //The north calibration switch #define TIP_SENSOR_PIN 2 //The tipping bucket rain sensor #define CALIBRATE_FACTOR 60 // amount of rain per rain bucket tip e.g. 5 is .05mm #define DHT_LUX_DELAY 300000 //Delay in milliseconds that the DHT and LUX sensors will wait before sending data #define WIND_DIR_DELAY 300000 //Delay in milliseconds that the DHT and LUX sensors will wait before sending data #define CHILD_ID_RAIN_LOG 3 // Keeps track of accumulated rainfall #define CHILD_ID_TRIPPED_INDICATOR 4 // Indicates Tripped when rain detected #define CHILD_ID_WIND 5 // Indicates Tripped when rain detected #define EEPROM_NORTH_OFFSET_LOCATION 0 // location of the EEPROM circular buffer #define EEPROM_BUFFER_LOCATION 1 // location of the EEPROM circular buffer #define E_BUFFER_LENGTH 240 #define RAIN_BUCKET_SIZE 120 #ifdef DEBUG_ON #define DEBUG_PRINT(x) Serial.print(x) #define DEBUG_PRINTLN(x) Serial.println(x) #define SERIAL_START(x) Serial.begin(x) #else #define DEBUG_PRINT(x) #define DEBUG_PRINTLN(x) #define SERIAL_START(x) #endif // MyMessage msgRainRate(CHILD_ID_RAIN_LOG, V_RAINRATE); MyMessage msgRain(CHILD_ID_RAIN_LOG, V_RAIN); // MyMessage msgRainVAR1(CHILD_ID_RAIN_LOG, V_VAR1); MyMessage msgRainVAR2(CHILD_ID_RAIN_LOG, V_VAR2); MyMessage msgRainVAR3(CHILD_ID_RAIN_LOG, V_VAR3); MyMessage msgRainVAR4(CHILD_ID_RAIN_LOG, V_VAR4); MyMessage msgRainVAR5(CHILD_ID_RAIN_LOG, V_VAR5); // MyMessage msgTripped(CHILD_ID_TRIPPED_INDICATOR, V_TRIPPED); MyMessage msgTrippedVar1(CHILD_ID_TRIPPED_INDICATOR, V_VAR1); MyMessage msgTrippedVar2(CHILD_ID_TRIPPED_INDICATOR, V_VAR2); MyMessage msgWindSpeed(CHILD_ID_WIND, V_WIND); MyMessage msgWindGust(CHILD_ID_WIND, V_GUST); MyMessage msgWindDirection(CHILD_ID_WIND, V_DIRECTION); // #ifdef DHT_ON #include <DHT.h> #define CHILD_ID_HUM 0 #define CHILD_ID_TEMP 1 #define HUMIDITY_SENSOR_DIGITAL_PIN 3 DHT dht; float lastTemp; float lastHum; bool metric = false; MyMessage msgHum(CHILD_ID_HUM, V_HUM); MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP); #endif // #ifdef LUX_ON //BH1750 is connected to SCL (analog input A5) and SDA (analog input A4) #include <BH1750.h> #include <Wire.h> #define CHILD_ID_LIGHT 2 BH1750 lightSensor; MyMessage msg(CHILD_ID_LIGHT, V_LIGHT_LEVEL); unsigned int lastlux; uint8_t heartbeat = 10; //Used to send the light lux to gateway as soon as the device is restarted and after the DHT_LUX_DELAY has happened 10 times #endif AS5047 myAS5047(5); //AS5047_CHIP_SELECT_PIN); //Wind direction magnetic position sensor uint8_t north_offset; bool button; int wind_direction; int last_direction; unsigned long sensorPreviousMillis; unsigned long windDirPreviousMillis; int eepromIndex; int tipSensorPin = 3; // Pin the tipping bucket is connected to. Must be interrupt capable pin int ledPin = 5; // Pin the LED is connected to. PWM capable pin required #ifdef DEBUG_ON unsigned long dataMillis; unsigned long serialInterval = 600000UL; #endif const unsigned long oneHour = 3600000UL; unsigned long lastTipTime; unsigned long lastRainTime; //Used for rainRate calculation unsigned int rainBucket [RAIN_BUCKET_SIZE] ; /* 24 hours x 5 Days = 120 hours */ unsigned int rainRate = 0; uint8_t rainWindow = 72; //default rain window in hours. Will be overwritten with msgTrippedVar1. volatile int wasTippedBuffer = 0; int rainSensorThreshold = 50; //default rain sensor sensitivity in hundredths. Will be overwritten with msgTrippedVar2. uint8_t state = 0; uint8_t oldState = 2; //Setting the default to something other than 1 or 0 unsigned int lastRainRate = 0; int lastMeasure = 0; bool gotTime = false; uint8_t lastHour; uint8_t currentHour; // void presentation() { // Register all sensors to gw (they will be created as child devices) sendSketchInfo(SKETCH_NAME, SKETCH_VERSION); wait(DWELL_TIME); present(CHILD_ID_RAIN_LOG, S_RAIN); wait(DWELL_TIME); present(CHILD_ID_TRIPPED_INDICATOR, S_MOTION); wait(DWELL_TIME); present(CHILD_ID_WIND, S_WIND); wait(DWELL_TIME); #ifdef DHT_ON present(CHILD_ID_HUM, S_HUM); wait(DWELL_TIME); present(CHILD_ID_TEMP, S_TEMP); wait(DWELL_TIME); #endif #ifdef LUX_ON present(CHILD_ID_LIGHT, S_LIGHT_LEVEL); #endif DEBUG_PRINTLN(F("Sensor Presentation Complete")); } void setup() { #ifndef MY_DEBUG SERIAL_START(115200); //Start serial if MySensors debugging isn't enabled #endif // pinMode(NORTH_SWITCH_PIN, INPUT_PULLUP); // Set up the IO pinMode(TIP_SENSOR_PIN, INPUT_PULLUP); attachInterrupt (digitalPinToInterrupt(TIP_SENSOR_PIN), sensorTipped, FALLING); // depending on location of the hall effect sensor may need CHANGE pinMode(ledPin, OUTPUT); digitalWrite(ledPin, HIGH); // //Sync time with the server // unsigned long functionTimeout = millis(); while (timeStatus() == timeNotSet && millis() - functionTimeout < 30000UL) { requestTime(); DEBUG_PRINTLN(F("Getting Time")); wait(1000); // call once per second DEBUG_PRINTLN(F(".")); } currentHour = hour(); lastHour = hour(); // //retrieve from EEPROM stored values on a power cycle. // //Get the north offset direction north_offset = loadState(EEPROM_NORTH_OFFSET_LOCATION)*2; bool isDataOnEeprom = false; for (int i = 0; i < E_BUFFER_LENGTH; i++) { uint8_t locator = loadState(EEPROM_BUFFER_LOCATION + i); if (locator == 0xFE) // found the EEPROM circular buffer index { eepromIndex = EEPROM_BUFFER_LOCATION + i; DEBUG_PRINT(F("EEPROM Index ")); DEBUG_PRINTLN(eepromIndex); //Now that we have the buffer index let's populate the rainBucket[] with data from eeprom loadRainArray(eepromIndex); isDataOnEeprom = true; break; } } // if (!isDataOnEeprom) // Added for the first time it is run on a new Arduino { DEBUG_PRINTLN(F("I didn't find valid EEPROM Index, so I'm writing one to location 0")); eepromIndex = EEPROM_BUFFER_LOCATION; saveState(eepromIndex, 0xFE); saveState(eepromIndex + 1, 0xFE); //then I will clear out any bad data for (int i = 2; i <= E_BUFFER_LENGTH; i++) { saveState(i, 0x00); } } #ifdef DEBUG_ON dataMillis = millis(); #endif lastTipTime = millis(); // request(CHILD_ID_TRIPPED_INDICATOR, V_VAR1); wait(DWELL_TIME); request(CHILD_ID_TRIPPED_INDICATOR, V_VAR2); wait(DWELL_TIME); // #ifdef DHT_ON dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN); metric = getConfig().isMetric; //metric = false; wait(DWELL_TIME); #endif // #ifdef LUX_ON lightSensor.begin(); #endif // transmitRainData(); //Setup complete send any data loaded from eeprom to gateway } void loop() { if (state) { prettyFade(); // breathe if tripped } else { slowFlash(); // blink if not tripped } #ifdef DEBUG_ON // Serial Debug Block if ( (millis() - dataMillis) >= serialInterval) { for (int i = 24; i <= 120; i = i + 24) { updateSerialData(i); } dataMillis = millis(); } #endif //NORTH_SWITCH_PIN button = digitalRead(NORTH_SWITCH_PIN); if (!button) { setNorthOffset(); } // // let's constantly check to see if the rain in the past rainWindow hours is greater than rainSensorThreshold // int measure = 0; // Check to see if we need to show sensor tripped in this block for (int i = 0; i < rainWindow; i++) { measure += rainBucket [i]; if (measure != lastMeasure) { // DEBUG_PRINT(F("measure value (total rainBucket within rainWindow): ")); // DEBUG_PRINTLN(measure); lastMeasure = measure; } } // state = (measure >= (rainSensorThreshold * 100)); if (state != oldState) { send(msgTripped.set(state)); wait(DWELL_TIME); DEBUG_PRINT(F("New Sensor State... Sensor: ")); DEBUG_PRINTLN(state ? "Tripped" : "Not Tripped"); oldState = state; } //WIND_DIR_DELAY if (millis() - windDirPreviousMillis > WIND_DIR_DELAY) { wind_direction = getWindDirection(); if (wind_direction != last_direction) { send(msgWindDirection.set(wind_direction)); } last_direction = wind_direction; windDirPreviousMillis = millis(); } // unsigned long tipDelay = millis() - lastRainTime; if (wasTippedBuffer) // if was tipped, then update the 24hour total and transmit to Vera { DEBUG_PRINTLN(F("Sensor Tipped")); DEBUG_PRINT(F("rainBucket [0] value: ")); DEBUG_PRINTLN(rainBucket [0]); send(msgRain.set((float)rainTotal(currentHour) / 100, 1)); //Calculate the total rain for the day wait(DWELL_TIME); wasTippedBuffer--; rainRate = ((oneHour) / tipDelay); if (rainRate != lastRainRate) { send(msgRainRate.set(rainRate, 1)); wait(DWELL_TIME); DEBUG_PRINT(F("RainRate= ")); DEBUG_PRINTLN(rainRate); lastRainRate = rainRate; } lastRainTime = lastTipTime; } // currentHour = hour(); if (currentHour != lastHour) { DEBUG_PRINTLN(F("One hour elapsed.")); send(msgRain.set((float)rainTotal(currentHour) / 100, 1)); // send today's rainfall wait(DWELL_TIME); saveState(eepromIndex, highByte(rainBucket[0])); saveState(eepromIndex + 1, lowByte(rainBucket[0])); DEBUG_PRINT(F("Saving rainBucket[0] to eeprom. rainBucket[0] = ")); DEBUG_PRINTLN(rainBucket[0]); for (int i = RAIN_BUCKET_SIZE - 1; i >= 0; i--)//cascade an hour of values back into the array { rainBucket [i + 1] = rainBucket [i]; } request(CHILD_ID_TRIPPED_INDICATOR, V_VAR1); wait(DWELL_TIME); request(CHILD_ID_TRIPPED_INDICATOR, V_VAR2); wait(DWELL_TIME); rainBucket[0] = 0; eepromIndex = eepromIndex + 2; if (eepromIndex > EEPROM_BUFFER_LOCATION + E_BUFFER_LENGTH) { eepromIndex = EEPROM_BUFFER_LOCATION; } DEBUG_PRINT(F("Writing to EEPROM. Index: ")); DEBUG_PRINTLN(eepromIndex); saveState(eepromIndex, 0xFE); saveState(eepromIndex + 1, 0xFE); requestTime(); // sync the time every hour wait(DWELL_TIME); transmitRainData(); rainRate = 0; send(msgRainRate.set(rainRate, 1)); wait(DWELL_TIME); DEBUG_PRINTLN(F("Sending rainRate is 0 to controller")); lastHour = hour(); } if (millis() - sensorPreviousMillis > DHT_LUX_DELAY) { #ifdef DHT_ON //DHT Code doDHT(); #endif #ifdef LUX_ON doLUX(); #endif sensorPreviousMillis = millis(); } } int getWindDirection() { north_offset = loadState(EEPROM_NORTH_OFFSET_LOCATION); int value = readDir(); int dir = ((value - north_offset) < 0) ? 360 - abs(value - north_offset) : value - north_offset; DEBUG_PRINT("Wind direction: "); DEBUG_PRINTLN(dir); return dir; } // void setNorthOffset() { int value = readDir(); if (north_offset != value) { saveState(EEPROM_NORTH_OFFSET_LOCATION, value/2); north_offset = value; DEBUG_PRINT("North offset set to: "); DEBUG_PRINTLN(value/2); } } int readDir() { int value = (359*myAS5047.sensor_read())/16383; return value; } // #ifdef DHT_ON void doDHT(void) { float temperature = dht.getTemperature(); if (isnan(temperature)) { DEBUG_PRINTLN(F("Failed reading temperature from DHT")); } else if (temperature != lastTemp) { lastTemp = temperature; if (!metric) { temperature = dht.toFahrenheit(temperature); } send(msgTemp.set(temperature, 1)); wait(DWELL_TIME); DEBUG_PRINT(F("Temperature is: ")); DEBUG_PRINTLN(temperature); } float humidity = dht.getHumidity();; if (isnan(humidity)) { DEBUG_PRINTLN(F("Failed reading humidity from DHT")); } else if (humidity != lastHum) { lastHum = humidity; send(msgHum.set(humidity, 1)); wait(DWELL_TIME); DEBUG_PRINT(F("Humidity is: ")); DEBUG_PRINTLN(humidity); } } #endif // #ifdef LUX_ON void doLUX(void) { unsigned int lux = lightSensor.readLightLevel();// Get Lux value DEBUG_PRINT(F("Current LUX Level: ")); DEBUG_PRINTLN(lux); heartbeat++; if (lux != lastlux || heartbeat > 10) { send(msg.set(lux)); lastlux = lux; } if (heartbeat > 10) { heartbeat = 0; } } #endif // void sensorTipped() { unsigned long thisTipTime = millis(); if (thisTipTime - lastTipTime > 100UL) { rainBucket[0] += CALIBRATE_FACTOR; // adds CALIBRATE_FACTOR hundredths of unit each tip wasTippedBuffer++; } lastTipTime = thisTipTime; } // int rainTotal(int hours) { int total = 0; for ( int i = 0; i <= hours; i++) { total += rainBucket [i]; } return total; } #ifdef DEBUG_ON void updateSerialData(int x) { DEBUG_PRINT(F("Rain last ")); DEBUG_PRINT(x); DEBUG_PRINTLN(F(" hours: ")); float tipCount = 0; for (int i = 0; i < x; i++) { tipCount = tipCount + rainBucket [i]; } tipCount = tipCount / 100; DEBUG_PRINTLN(tipCount); } #endif void loadRainArray(int eValue) // retrieve stored rain array from EEPROM on powerup { for (int i = 1; i < RAIN_BUCKET_SIZE; i++) { eValue = eValue - 2; if (eValue < EEPROM_BUFFER_LOCATION) { eValue = EEPROM_BUFFER_LOCATION + E_BUFFER_LENGTH; } DEBUG_PRINT(F("EEPROM location: ")); DEBUG_PRINTLN(eValue); uint8_t rainValueHigh = loadState(eValue); uint8_t rainValueLow = loadState(eValue + 1); unsigned int rainValue = rainValueHigh << 8; rainValue |= rainValueLow; rainBucket[i] = rainValue; // DEBUG_PRINT(F("rainBucket[ value: ")); DEBUG_PRINT(i); DEBUG_PRINT(F("] value: ")); DEBUG_PRINTLN(rainBucket[i]); } } void transmitRainData(void) { DEBUG_PRINT(F("In transmitRainData. currentHour = ")); DEBUG_PRINTLN(currentHour); int rainUpdateTotal = 0; for (int i = currentHour; i >= 0; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 1: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR1.set((float)rainUpdateTotal / 100.0, 1)); //Send current day rain totals (resets at midnight) wait(DWELL_TIME); #ifdef USE_DAILY rainUpdateTotal = 0; #endif for (int i = currentHour + 24; i > currentHour; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 2: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR2.set((float)rainUpdateTotal / 100.0, 1)); wait(DWELL_TIME); #ifdef USE_DAILY rainUpdateTotal = 0; #endif for (int i = currentHour + 48; i > currentHour + 24; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 3: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR3.set((float)rainUpdateTotal / 100.0, 1)); wait(DWELL_TIME); #ifdef USE_DAILY rainUpdateTotal = 0; #endif for (int i = currentHour + 72; i > currentHour + 48; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 4: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR4.set((float)rainUpdateTotal / 100.0, 1)); wait(DWELL_TIME); #ifdef USE_DAILY rainUpdateTotal = 0; #endif for (int i = currentHour + 96; i > currentHour + 72; i--) { rainUpdateTotal += rainBucket[i]; DEBUG_PRINT(F("Adding rainBucket[")); DEBUG_PRINT(i); DEBUG_PRINTLN(F("] to rainUpdateTotal.")); } DEBUG_PRINT(F("TX Day 5: rainUpdateTotal = ")); DEBUG_PRINTLN((float)rainUpdateTotal / 100.0); send(msgRainVAR5.set((float)rainUpdateTotal / 100.0, 1)); wait(DWELL_TIME); } void receive(const MyMessage &message) { if (message.sensor == CHILD_ID_RAIN_LOG) { // nothing to do here } else if (message.sensor == CHILD_ID_TRIPPED_INDICATOR) { if (message.type == V_VAR1) { rainWindow = atoi(message.data); if (rainWindow > 120) { rainWindow = 120; } else if (rainWindow < 1) { rainWindow = 1; } if (rainWindow != atoi(message.data)) // if I changed the value back inside the boundries, push that number back to Vera { send(msgTrippedVar1.set(rainWindow)); } } else if (message.type == V_VAR2) { rainSensorThreshold = atoi(message.data); if (rainSensorThreshold > 10000) { rainSensorThreshold = 10000; } else if (rainSensorThreshold < 1) { rainSensorThreshold = 1; } if (rainSensorThreshold != atoi(message.data)) // if I changed the value back inside the boundries, push that number back to Vera { send(msgTrippedVar2.set(rainSensorThreshold)); } } } } void prettyFade(void) { float val = (exp(sin(millis() / 2000.0 * PI)) - 0.36787944) * 108.0; analogWrite(ledPin, val); } void slowFlash(void) { static bool ledState = true; static unsigned long pulseStart = millis(); if (millis() - pulseStart < 100UL) { digitalWrite(ledPin, !ledState); pulseStart = millis(); } } void receiveTime(unsigned long newTime) { DEBUG_PRINTLN(F("Time received...")); setTime(newTime); char theTime[6]; sprintf(theTime, "%d:%2d", hour(), minute()); DEBUG_PRINTLN(theTime); }These are the errors that I get when I try to run the code:
Starting sensor (RNNNA-, 2.0.0) TSM:INIT !TSM:RADIO:FAIL !TSM:FAILURE TSM:PDTIf I disconnect the direction sensor and start it, the radio works fine. The odd thing is that when I run the test code for the direction sensor with the radio connected to the bus, that works fine.
Any ideas?
@dbemowsk my guess is your sensor tries to communicate on the SPI bus and prevents communication with NRF24.
I don't know what is in you AS5047 files so I'm not sure but I suppose it's taking over the SPI bus at creation, you should try to force the CSN pin used for the as5047 to HIGH in before() method to disable it before MySensors library starts using the radio. -
@dbemowsk my guess is your sensor tries to communicate on the SPI bus and prevents communication with NRF24.
I don't know what is in you AS5047 files so I'm not sure but I suppose it's taking over the SPI bus at creation, you should try to force the CSN pin used for the as5047 to HIGH in before() method to disable it before MySensors library starts using the radio.@Nca78 ok, so I tried adding this:
void before() { digitalWrite(AS5047_CHIP_SELECT_PIN, HIGH); }This seems to now allow the radio to connect, but I am still having some trouble. I then tried removing setting the CSN pin high in the before(), and adding it to the constructor of the library class here:
AS5047::AS5047(uint16_t SelectPin) : _ss(SelectPin) { pinMode(_ss, OUTPUT); SPCR = (1<<SPE) | (1<<MSTR) | (1<<CPHA) | (1<<SPR1) | (1<<SPR0); // slow down clock speed, set up spi digitalWrite(_ss, HIGH); //<<------------- SPI.begin(); }This seemed to do the same as putting it in the begin() method, but still having some trouble. I am going to see if I can work through the problems on my own, but I may post if I have questions. Let me know if you see problems with what I did to the class.
Thanks.
-
@Nca78 ok, so I tried adding this:
void before() { digitalWrite(AS5047_CHIP_SELECT_PIN, HIGH); }This seems to now allow the radio to connect, but I am still having some trouble. I then tried removing setting the CSN pin high in the before(), and adding it to the constructor of the library class here:
AS5047::AS5047(uint16_t SelectPin) : _ss(SelectPin) { pinMode(_ss, OUTPUT); SPCR = (1<<SPE) | (1<<MSTR) | (1<<CPHA) | (1<<SPR1) | (1<<SPR0); // slow down clock speed, set up spi digitalWrite(_ss, HIGH); //<<------------- SPI.begin(); }This seemed to do the same as putting it in the begin() method, but still having some trouble. I am going to see if I can work through the problems on my own, but I may post if I have questions. Let me know if you see problems with what I did to the class.
Thanks.
-
@dbemowsk it's good practice to have a pull up resistor on each SPI CS line (approx. 10k).
It can save you a lot of hassle when multiple devices share the same SPI bus. -
@Yveaux Thanks, this is easy enough. I have some small 1/8w 10k resistors with a small bit of room in the proto area of the easy newbie board yet, I will add one in.
-
@Yveaux I thought the nRF24 radios would have had it built in to the module, but I never checked. It is just that and the magnetic direction sensor on the SPI bus. After thinking about it too, I may just add the resistor on to the small board I have inside the wind speed and direction sensor case that the wire harness connects to, or do you think it would be better if it was closer to the arduino? If that is the case, then I would stick with my original plan to put it in the little bit of leftover space in the proto area of the easy newbie board. Jumper wires are getting a bit cramped in that space though, so if I can avoid it I will.
-
@Yveaux I thought the nRF24 radios would have had it built in to the module, but I never checked. It is just that and the magnetic direction sensor on the SPI bus. After thinking about it too, I may just add the resistor on to the small board I have inside the wind speed and direction sensor case that the wire harness connects to, or do you think it would be better if it was closer to the arduino? If that is the case, then I would stick with my original plan to put it in the little bit of leftover space in the proto area of the easy newbie board. Jumper wires are getting a bit cramped in that space though, so if I can avoid it I will.
@dbemowsk the nrf module doesn't have a pullup on CS.
Where you put them doesn't really matter. It's just to have a defined, unselected state when the lines are not actively driven by the microcontroller.
If it is too much trouble in your current hardware, then skip the pull-ups and save them for your next piece of hardware. The same can be achieved in software, but you just must make sure all CS lines are made inactive (high) before doing anything with the SPI bus. Before() is a good place to achieve this, but bad designed drivers that use eg the constructor to do spi initialization could still beat you to it...
Therefore pull-ups are preferred. -
@dbemowsk the nrf module doesn't have a pullup on CS.
Where you put them doesn't really matter. It's just to have a defined, unselected state when the lines are not actively driven by the microcontroller.
If it is too much trouble in your current hardware, then skip the pull-ups and save them for your next piece of hardware. The same can be achieved in software, but you just must make sure all CS lines are made inactive (high) before doing anything with the SPI bus. Before() is a good place to achieve this, but bad designed drivers that use eg the constructor to do spi initialization could still beat you to it...
Therefore pull-ups are preferred. -
@dbemowsk the nrf module doesn't have a pullup on CS.
Where you put them doesn't really matter. It's just to have a defined, unselected state when the lines are not actively driven by the microcontroller.
If it is too much trouble in your current hardware, then skip the pull-ups and save them for your next piece of hardware. The same can be achieved in software, but you just must make sure all CS lines are made inactive (high) before doing anything with the SPI bus. Before() is a good place to achieve this, but bad designed drivers that use eg the constructor to do spi initialization could still beat you to it...
Therefore pull-ups are preferred.@Yveaux So if this is done in software, is it better to be done in the before() method rather than the constructor of the library class? If the nRF24 radios do not have a built in pull up on the CS line, does the MySensors library somehow take care of this in one of it's class files? I haven't seen a push to have designers of MySensors hardware include pull-ups on the nRF24's CS line...