💬 OH MySensors RGBW Controller
-
@LastSamurai The gerber files on Dirty PCBs are the mosfet corrected ones or the wrong? I just ordered some and now I've this doubt.
-
@LastSamurai The gerber files on Dirty PCBs are the mosfet corrected ones or the wrong? I just ordered some and now I've this doubt.
@Sergio-Rius
I ordered the pcb a few months back on dirty pcbs. That one had the MOSFET pins connected wrong, but it wasn't that difficult to turn them an discribed in the post. I am not sure if a correct one is available. -
@Sergio-Rius
I ordered the pcb a few months back on dirty pcbs. That one had the MOSFET pins connected wrong, but it wasn't that difficult to turn them an discribed in the post. I am not sure if a correct one is available.@CoolSaet Thankiuu! I'll try not to mess anything.
-
@Sergio-Rius I am pretty sure the version 1.3 from the store still has the pins rotated (= wrong but you can fix it as described). There is a fixed version of the gerber files in my github repo that is linked to this project though. I just haven't ordered them from dirtyPCBs yet so they are not in the store (as I am still using the rest of the old ones).
-
Thanks, @LastSamurai, I went and compared the DIrty PCB files with the v1.3 ones on OpenHardware.IO and they are indeed different. It looks like the DIrtyPCB link is out of date and still has the error on them.
@Sergio-Rius would be very grateful if you could update those files :) -
Thanks, @LastSamurai, I went and compared the DIrty PCB files with the v1.3 ones on OpenHardware.IO and they are indeed different. It looks like the DIrtyPCB link is out of date and still has the error on them.
@Sergio-Rius would be very grateful if you could update those files :)@Stuart-Middleton Unfortunately my boards are already made and shipped. They made them in just a day (Sunday) and didn't have me time to rectify my order.
-
@Stuart-Middleton Unfortunately my boards are already made and shipped. They made them in just a day (Sunday) and didn't have me time to rectify my order.
@Sergio-Rius Oh well, it doesn't look too hard to adapt for the error.
-
@Sergio-Rius Oh well, it doesn't look too hard to adapt for the error.
@Stuart-Middleton It really shoudn't be. Just follow the pictures in the project. There are also updated project/gerber files in my github for anyone wanting to order new ones. Once I have used all of the Version 1.3 ones I will order new ones from dirtyPCBs and add the link here.
-
I have tried to get some kind of non linear fading by calculating the values for 256 steps using Excel and putting them in an array. The result is pretty good. Please test and share your opinion. ;)
/** Based on the MySensors Project: http://www.mysensors.org This sketch controls a (analog)RGBW strip by listening to new color values from a (domoticz) controller and then fading to the new color. Version 1.1 - Added save/restore of values to/from controller, removed non linear fading code Version 1.0 - Changed pins and gw definition Version 0.9 - Oliver Hilsky **/ #define MY_DEBUG #define SN "RGBW 01" #define SV "1.1" #define MY_RADIO_NRF24 // change the pins to free up the pwm pin for led control #define MY_RF24_CE_PIN 4 //<-- NOTE!!! changed, the default is 9 #define MY_RF24_CS_PIN 10 // default is 10 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW //Uncomment to enable repeater mode //#define MY_REPEATER_FEATURE //Uncomment to assign static node ID //#define MY_NODE_ID 9 // Load mysensors library #include <MySensors.h> // Load Serial Peripheral Interface library #include <SPI.h> // Arduino pin attached to driver pins #define RED_PIN 3 #define WHITE_PIN 9 #define GREEN_PIN 5 #define BLUE_PIN 6 #define NUM_CHANNELS 4 // how many channels, RGBW=4 RGB=3... #define CHILD_ID 1 // Smooth stepping between the values #define STEP 1 #define INTERVAL 10 MyMessage lastvalueMsg(CHILD_ID, V_VAR1); MyMessage lastisonMsg(CHILD_ID, V_VAR2); MyMessage lastdimmMsg(CHILD_ID, V_VAR3); // Stores the current color settings byte channels[4] = {RED_PIN, GREEN_PIN, BLUE_PIN, WHITE_PIN}; byte values[4] = {0, 0, 0, 0}; byte target_values[4] = {0, 0, 0, 0}; //Stores corrected values for each step from 0 to 255. See https://diarmuid.ie/blog/pwm-exponential-led-fading-on-arduino-or-other-platforms/ byte converted_values[256] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,9,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,13,13,13,13,14,14,14,15,15,15,16,16,17,17,17,18,18,19,19,20,20,20,21,21,22,22,23,23,24,24,25,26,26,27,27,28,29,29,30,31,31,32,33,34,34,35,36,37,38,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,60,61,62,64,65,67,68,70,71,73,75,76,78,80,81,83,85,87,89,91,93,95,97,99,101,104,106,108,111,113,116,118,121,123,126,129,132,135,138,141,144,147,150,154,157,161,164,168,171,175,179,183,187,191,195,200,204,209,213,218,223,228,233,238,243,249,255}; // stores dimming level byte dimming = 100; byte target_dimming = 100; // tracks if the strip should be on of off boolean isOn = false; // tracks if the strip's last status was off. This overrides isOn at startup boolean wasOff = true; //tracks if the old values have bben requested from the controller. This prevents the request from being send multipßle times in the main loop. boolean valuesrequested = false; // time tracking for updates unsigned long lastupdate = millis(); void setup() { // Set all channels to output (pin number, type) for (int i = 0; i < NUM_CHANNELS; i++) { pinMode(channels[i], OUTPUT); } // debug if (isOn) { Serial.println("RGBW is running..."); } } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo(SN, SV); // Register this device as Waterflow sensor present(CHILD_ID, S_RGBW_LIGHT, SN, true); } void loop() { if (!valuesrequested) { // get old values if this is just a restart Serial.println("Requesting old values..."); //Request RGBW values request( CHILD_ID, V_VAR1 ); wait(200); //Request Status request( CHILD_ID, V_VAR2 ); wait(200); //Request dimm level request( CHILD_ID, V_VAR3 ); valuesrequested = true; } // set the new light colors if (millis() > lastupdate + INTERVAL) { updateLights(); lastupdate = millis(); } } // callback function for incoming messages void receive(const MyMessage &message) { Serial.print("Got a message - "); Serial.print("Messagetype is: "); Serial.println(message.type); // acknoledgment if (message.isAck()) { Serial.println("Got ack from gateway"); } // new dim level else if (message.type == V_DIMMER or message.type == V_VAR3) { Serial.println("Dimming to "); Serial.println(message.getString()); target_dimming = message.getByte(); send(lastdimmMsg.set(target_dimming)); if (!wasOff) { // a new dimmer value also means on, no seperate signal gets send (by domoticz) isOn = true; send(lastisonMsg.set(isOn)); } } // on / off message else if (message.type == V_STATUS or message.type == V_VAR2) { Serial.print("Turning light "); isOn = message.getInt(); if (isOn) { Serial.println("on"); wasOff = false; } else { Serial.println("off"); } send(lastisonMsg.set(isOn)); } // new color value else if (message.type == V_RGBW or message.type == V_VAR1) { const char * rgbvalues = message.getString(); send(lastvalueMsg.set(rgbvalues)); inputToRGBW(rgbvalues); if (!wasOff) { // a new color also means on, no seperate signal gets send (by domoticz); needed e.g. for groups isOn = true; send(lastisonMsg.set(isOn)); } } } // this gets called every INTERVAL milliseconds and updates the current pwm levels for all colors void updateLights() { int convertedvalue=0; // update pin values -debug //Serial.println(greenval); //Serial.println(redval); //Serial.println(blueval); //Serial.println(whiteval); //Serial.println(target_greenval); //Serial.println(target_redval); //Serial.println(target_blueval); //Serial.println(target_whiteval); //Serial.println("+++++++++++++++"); // for each color for (int v = 0; v < NUM_CHANNELS; v++) { if (values[v] < target_values[v]) { values[v] += STEP; if (values[v] > target_values[v]) { values[v] = target_values[v]; } } if (values[v] > target_values[v]) { values[v] -= STEP; if (values[v] < target_values[v]) { values[v] = target_values[v]; } } } // dimming if (dimming < target_dimming) { dimming += STEP; if (dimming > target_dimming) { dimming = target_dimming; } } if (dimming > target_dimming) { dimming -= STEP; if (dimming < target_dimming) { dimming = target_dimming; } } /* // debug - new values Serial.println(greenval); Serial.println(redval); Serial.println(blueval); Serial.println(whiteval); Serial.println(target_greenval); Serial.println(target_redval); Serial.println(target_blueval); Serial.println(target_whiteval); Serial.println("+++++++++++++++"); */ // set actual pin values for (int i = 0; i < NUM_CHANNELS; i++) { if (isOn) { // normal fading //analogWrite(channels[i], dimming / 100.0 * values[i]); //Fading with corrected values see https://diarmuid.ie/blog/pwm-exponential-led-fading-on-arduino-or-other-platforms/ analogWrite(channels[i], dimming / 100.0 * converted_values[values[i]]); } else { analogWrite(channels[i], 0); } } } // converts incoming color string to actual (int) values // ATTENTION this currently does nearly no checks, so the format needs to be exactly like domoticz sends the strings void inputToRGBW(const char * input) { Serial.print("Got color value of length: "); Serial.println(strlen(input)); if (strlen(input) == 6) { Serial.println("new rgb value"); target_values[0] = fromhex (& input [0]); target_values[1] = fromhex (& input [2]); target_values[2] = fromhex (& input [4]); target_values[3] = 0; } else if (strlen(input) == 9) { Serial.println("new rgbw value"); target_values[0] = fromhex (& input [1]); // ignore # as first sign target_values[1] = fromhex (& input [3]); target_values[2] = fromhex (& input [5]); target_values[3] = fromhex (& input [7]); } else { Serial.println("Wrong length of input"); } Serial.print("New color values: "); Serial.println(input); for (int i = 0; i < NUM_CHANNELS; i++) { Serial.print(target_values[i]); Serial.print(", "); } Serial.println(""); Serial.print("Dimming: "); Serial.println(dimming); } // converts hex char to byte byte fromhex (const char * str) { char c = str [0] - '0'; if (c > 9) c -= 7; int result = c; c = str [1] - '0'; if (c > 9) c -= 7; return (result << 4) | c; }@Jan-Gatzke Did you ever manage to get your non-linear fading to work? I used the predefined values from your sketch and added them to my newer one but whenever I use that the sketch stops working and only rubbish is shown on the serial port.
Here is my new version: github -
@Jan-Gatzke Did you ever manage to get your non-linear fading to work? I used the predefined values from your sketch and added them to my newer one but whenever I use that the sketch stops working and only rubbish is shown on the serial port.
Here is my new version: githubYes, I did! This sketch is working for me:
/** Based on the MySensors Project: http://www.mysensors.org This sketch controls a (analog)RGBW strip by listening to new color values from a (domoticz) controller and then fading to the new color. Version 1.1 - Added save/restore of values to/from controller, removed non linear fading code Version 1.0 - Changed pins and gw definition Version 0.9 - Oliver Hilsky **/ #define MY_DEBUG #define SN "RGBW 01" #define SV "1.1" #define MY_RADIO_NRF24 #define MY_PARENT_NODE_ID 10 // change the pins to free up the pwm pin for led control #define MY_RF24_CE_PIN 4 //<-- NOTE!!! changed, the default is 9 #define MY_RF24_CS_PIN 10 // default is 10 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW //Uncomment to enable repeater mode //#define MY_REPEATER_FEATURE //Uncomment to assign static node ID //#define MY_NODE_ID 9 // Load mysensors library #include <MySensors.h> // Load Serial Peripheral Interface library #include <SPI.h> // Arduino pin attached to driver pins #define RED_PIN 3 #define WHITE_PIN 9 #define GREEN_PIN 5 #define BLUE_PIN 6 #define NUM_CHANNELS 4 // how many channels, RGBW=4 RGB=3... #define CHILD_ID 1 // Smooth stepping between the values #define STEP 1 #define INTERVAL 10 MyMessage lastvalueMsg(CHILD_ID, V_VAR1); MyMessage lastisonMsg(CHILD_ID, V_VAR2); MyMessage lastdimmMsg(CHILD_ID, V_VAR3); // Stores the current color settings byte channels[4] = {RED_PIN, GREEN_PIN, BLUE_PIN, WHITE_PIN}; byte values[4] = {0, 0, 0, 0}; byte target_values[4] = {0, 0, 0, 0}; //Stores corrected values for each step from 0 to 255. See https://diarmuid.ie/blog/pwm-exponential-led-fading-on-arduino-or-other-platforms/ byte converted_values[256] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,9,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,13,13,13,13,14,14,14,15,15,15,16,16,17,17,17,18,18,19,19,20,20,20,21,21,22,22,23,23,24,24,25,26,26,27,27,28,29,29,30,31,31,32,33,34,34,35,36,37,38,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,60,61,62,64,65,67,68,70,71,73,75,76,78,80,81,83,85,87,89,91,93,95,97,99,101,104,106,108,111,113,116,118,121,123,126,129,132,135,138,141,144,147,150,154,157,161,164,168,171,175,179,183,187,191,195,200,204,209,213,218,223,228,233,238,243,249,255}; // stores dimming level byte dimming = 100; byte target_dimming = 100; // tracks if the strip should be on of off boolean isOn = false; // tracks if the strip's last status was off. This overrides isOn at startup boolean wasOff = true; //tracks if the old values have bben requested from the controller. This prevents the request from being send multipßle times in the main loop. boolean valuesrequested = false; // time tracking for updates unsigned long lastupdate = millis(); void setup() { // Set all channels to output (pin number, type) for (int i = 0; i < NUM_CHANNELS; i++) { pinMode(channels[i], OUTPUT); } // debug if (isOn) { Serial.println("RGBW is running..."); } } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo(SN, SV); // Register this device as Waterflow sensor present(CHILD_ID, S_RGBW_LIGHT, SN, true); } void loop() { if (!valuesrequested) { // get old values if this is just a restart Serial.println("Requesting old values..."); //Request RGBW values request( CHILD_ID, V_VAR1 ); wait(200); //Request Status request( CHILD_ID, V_VAR2 ); wait(200); //Request dimm level request( CHILD_ID, V_VAR3 ); valuesrequested = true; } // set the new light colors if (millis() > lastupdate + INTERVAL) { updateLights(); lastupdate = millis(); } } // callback function for incoming messages void receive(const MyMessage &message) { Serial.print("Got a message - "); Serial.print("Messagetype is: "); Serial.println(message.type); // acknoledgment if (message.isAck()) { Serial.println("Got ack from gateway"); } // new dim level else if (message.type == V_DIMMER or message.type == V_VAR3) { Serial.println("Dimming to "); Serial.println(message.getString()); target_dimming = message.getByte(); send(lastdimmMsg.set(target_dimming)); if (!wasOff) { // a new dimmer value also means on, no seperate signal gets send (by domoticz) isOn = true; send(lastisonMsg.set(isOn)); } } // on / off message else if (message.type == V_STATUS or message.type == V_VAR2) { Serial.print("Turning light "); isOn = message.getInt(); if (isOn) { Serial.println("on"); wasOff = false; } else { Serial.println("off"); } send(lastisonMsg.set(isOn)); } // new color value else if (message.type == V_RGBW or message.type == V_VAR1) { const char * rgbvalues = message.getString(); send(lastvalueMsg.set(rgbvalues)); inputToRGBW(rgbvalues); if (!wasOff) { // a new color also means on, no seperate signal gets send (by domoticz); needed e.g. for groups isOn = true; send(lastisonMsg.set(isOn)); } } } // this gets called every INTERVAL milliseconds and updates the current pwm levels for all colors void updateLights() { int convertedvalue=0; // update pin values -debug //Serial.println(greenval); //Serial.println(redval); //Serial.println(blueval); //Serial.println(whiteval); //Serial.println(target_greenval); //Serial.println(target_redval); //Serial.println(target_blueval); //Serial.println(target_whiteval); //Serial.println("+++++++++++++++"); // for each color for (int v = 0; v < NUM_CHANNELS; v++) { if (values[v] < target_values[v]) { values[v] += STEP; if (values[v] > target_values[v]) { values[v] = target_values[v]; } } if (values[v] > target_values[v]) { values[v] -= STEP; if (values[v] < target_values[v]) { values[v] = target_values[v]; } } } // dimming if (dimming < target_dimming) { dimming += STEP; if (dimming > target_dimming) { dimming = target_dimming; } } if (dimming > target_dimming) { dimming -= STEP; if (dimming < target_dimming) { dimming = target_dimming; } } /* // debug - new values Serial.println(greenval); Serial.println(redval); Serial.println(blueval); Serial.println(whiteval); Serial.println(target_greenval); Serial.println(target_redval); Serial.println(target_blueval); Serial.println(target_whiteval); Serial.println("+++++++++++++++"); */ // set actual pin values for (int i = 0; i < NUM_CHANNELS; i++) { if (isOn) { // normal fading //analogWrite(channels[i], dimming / 100.0 * values[i]); //Fading with corrected values see https://diarmuid.ie/blog/pwm-exponential-led-fading-on-arduino-or-other-platforms/ analogWrite(channels[i], dimming / 100.0 * converted_values[values[i]]); } else { analogWrite(channels[i], 0); } } } // converts incoming color string to actual (int) values // ATTENTION this currently does nearly no checks, so the format needs to be exactly like domoticz sends the strings void inputToRGBW(const char * input) { Serial.print("Got color value of length: "); Serial.println(strlen(input)); if (strlen(input) == 6) { Serial.println("new rgb value"); target_values[0] = fromhex (& input [0]); target_values[1] = fromhex (& input [2]); target_values[2] = fromhex (& input [4]); target_values[3] = 0; } else if (strlen(input) == 9) { Serial.println("new rgbw value"); target_values[0] = fromhex (& input [1]); // ignore # as first sign target_values[1] = fromhex (& input [3]); target_values[2] = fromhex (& input [5]); target_values[3] = fromhex (& input [7]); } else { Serial.println("Wrong length of input"); } Serial.print("New color values: "); Serial.println(input); for (int i = 0; i < NUM_CHANNELS; i++) { Serial.print(target_values[i]); Serial.print(", "); } Serial.println(""); Serial.print("Dimming: "); Serial.println(dimming); } // converts hex char to byte byte fromhex (const char * str) { char c = str [0] - '0'; if (c > 9) c -= 7; int result = c; c = str [1] - '0'; if (c > 9) c -= 7; return (result << 4) | c; } -
Yes, I did! This sketch is working for me:
/** Based on the MySensors Project: http://www.mysensors.org This sketch controls a (analog)RGBW strip by listening to new color values from a (domoticz) controller and then fading to the new color. Version 1.1 - Added save/restore of values to/from controller, removed non linear fading code Version 1.0 - Changed pins and gw definition Version 0.9 - Oliver Hilsky **/ #define MY_DEBUG #define SN "RGBW 01" #define SV "1.1" #define MY_RADIO_NRF24 #define MY_PARENT_NODE_ID 10 // change the pins to free up the pwm pin for led control #define MY_RF24_CE_PIN 4 //<-- NOTE!!! changed, the default is 9 #define MY_RF24_CS_PIN 10 // default is 10 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW //Uncomment to enable repeater mode //#define MY_REPEATER_FEATURE //Uncomment to assign static node ID //#define MY_NODE_ID 9 // Load mysensors library #include <MySensors.h> // Load Serial Peripheral Interface library #include <SPI.h> // Arduino pin attached to driver pins #define RED_PIN 3 #define WHITE_PIN 9 #define GREEN_PIN 5 #define BLUE_PIN 6 #define NUM_CHANNELS 4 // how many channels, RGBW=4 RGB=3... #define CHILD_ID 1 // Smooth stepping between the values #define STEP 1 #define INTERVAL 10 MyMessage lastvalueMsg(CHILD_ID, V_VAR1); MyMessage lastisonMsg(CHILD_ID, V_VAR2); MyMessage lastdimmMsg(CHILD_ID, V_VAR3); // Stores the current color settings byte channels[4] = {RED_PIN, GREEN_PIN, BLUE_PIN, WHITE_PIN}; byte values[4] = {0, 0, 0, 0}; byte target_values[4] = {0, 0, 0, 0}; //Stores corrected values for each step from 0 to 255. See https://diarmuid.ie/blog/pwm-exponential-led-fading-on-arduino-or-other-platforms/ byte converted_values[256] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,9,9,9,9,9,10,10,10,10,11,11,11,11,12,12,12,13,13,13,13,14,14,14,15,15,15,16,16,17,17,17,18,18,19,19,20,20,20,21,21,22,22,23,23,24,24,25,26,26,27,27,28,29,29,30,31,31,32,33,34,34,35,36,37,38,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,60,61,62,64,65,67,68,70,71,73,75,76,78,80,81,83,85,87,89,91,93,95,97,99,101,104,106,108,111,113,116,118,121,123,126,129,132,135,138,141,144,147,150,154,157,161,164,168,171,175,179,183,187,191,195,200,204,209,213,218,223,228,233,238,243,249,255}; // stores dimming level byte dimming = 100; byte target_dimming = 100; // tracks if the strip should be on of off boolean isOn = false; // tracks if the strip's last status was off. This overrides isOn at startup boolean wasOff = true; //tracks if the old values have bben requested from the controller. This prevents the request from being send multipßle times in the main loop. boolean valuesrequested = false; // time tracking for updates unsigned long lastupdate = millis(); void setup() { // Set all channels to output (pin number, type) for (int i = 0; i < NUM_CHANNELS; i++) { pinMode(channels[i], OUTPUT); } // debug if (isOn) { Serial.println("RGBW is running..."); } } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo(SN, SV); // Register this device as Waterflow sensor present(CHILD_ID, S_RGBW_LIGHT, SN, true); } void loop() { if (!valuesrequested) { // get old values if this is just a restart Serial.println("Requesting old values..."); //Request RGBW values request( CHILD_ID, V_VAR1 ); wait(200); //Request Status request( CHILD_ID, V_VAR2 ); wait(200); //Request dimm level request( CHILD_ID, V_VAR3 ); valuesrequested = true; } // set the new light colors if (millis() > lastupdate + INTERVAL) { updateLights(); lastupdate = millis(); } } // callback function for incoming messages void receive(const MyMessage &message) { Serial.print("Got a message - "); Serial.print("Messagetype is: "); Serial.println(message.type); // acknoledgment if (message.isAck()) { Serial.println("Got ack from gateway"); } // new dim level else if (message.type == V_DIMMER or message.type == V_VAR3) { Serial.println("Dimming to "); Serial.println(message.getString()); target_dimming = message.getByte(); send(lastdimmMsg.set(target_dimming)); if (!wasOff) { // a new dimmer value also means on, no seperate signal gets send (by domoticz) isOn = true; send(lastisonMsg.set(isOn)); } } // on / off message else if (message.type == V_STATUS or message.type == V_VAR2) { Serial.print("Turning light "); isOn = message.getInt(); if (isOn) { Serial.println("on"); wasOff = false; } else { Serial.println("off"); } send(lastisonMsg.set(isOn)); } // new color value else if (message.type == V_RGBW or message.type == V_VAR1) { const char * rgbvalues = message.getString(); send(lastvalueMsg.set(rgbvalues)); inputToRGBW(rgbvalues); if (!wasOff) { // a new color also means on, no seperate signal gets send (by domoticz); needed e.g. for groups isOn = true; send(lastisonMsg.set(isOn)); } } } // this gets called every INTERVAL milliseconds and updates the current pwm levels for all colors void updateLights() { int convertedvalue=0; // update pin values -debug //Serial.println(greenval); //Serial.println(redval); //Serial.println(blueval); //Serial.println(whiteval); //Serial.println(target_greenval); //Serial.println(target_redval); //Serial.println(target_blueval); //Serial.println(target_whiteval); //Serial.println("+++++++++++++++"); // for each color for (int v = 0; v < NUM_CHANNELS; v++) { if (values[v] < target_values[v]) { values[v] += STEP; if (values[v] > target_values[v]) { values[v] = target_values[v]; } } if (values[v] > target_values[v]) { values[v] -= STEP; if (values[v] < target_values[v]) { values[v] = target_values[v]; } } } // dimming if (dimming < target_dimming) { dimming += STEP; if (dimming > target_dimming) { dimming = target_dimming; } } if (dimming > target_dimming) { dimming -= STEP; if (dimming < target_dimming) { dimming = target_dimming; } } /* // debug - new values Serial.println(greenval); Serial.println(redval); Serial.println(blueval); Serial.println(whiteval); Serial.println(target_greenval); Serial.println(target_redval); Serial.println(target_blueval); Serial.println(target_whiteval); Serial.println("+++++++++++++++"); */ // set actual pin values for (int i = 0; i < NUM_CHANNELS; i++) { if (isOn) { // normal fading //analogWrite(channels[i], dimming / 100.0 * values[i]); //Fading with corrected values see https://diarmuid.ie/blog/pwm-exponential-led-fading-on-arduino-or-other-platforms/ analogWrite(channels[i], dimming / 100.0 * converted_values[values[i]]); } else { analogWrite(channels[i], 0); } } } // converts incoming color string to actual (int) values // ATTENTION this currently does nearly no checks, so the format needs to be exactly like domoticz sends the strings void inputToRGBW(const char * input) { Serial.print("Got color value of length: "); Serial.println(strlen(input)); if (strlen(input) == 6) { Serial.println("new rgb value"); target_values[0] = fromhex (& input [0]); target_values[1] = fromhex (& input [2]); target_values[2] = fromhex (& input [4]); target_values[3] = 0; } else if (strlen(input) == 9) { Serial.println("new rgbw value"); target_values[0] = fromhex (& input [1]); // ignore # as first sign target_values[1] = fromhex (& input [3]); target_values[2] = fromhex (& input [5]); target_values[3] = fromhex (& input [7]); } else { Serial.println("Wrong length of input"); } Serial.print("New color values: "); Serial.println(input); for (int i = 0; i < NUM_CHANNELS; i++) { Serial.print(target_values[i]); Serial.print(", "); } Serial.println(""); Serial.print("Dimming: "); Serial.println(dimming); } // converts hex char to byte byte fromhex (const char * str) { char c = str [0] - '0'; if (c > 9) c -= 7; int result = c; c = str [1] - '0'; if (c > 9) c -= 7; return (result << 4) | c; }@Jan-Gatzke Thanks, I'll try that later although it doesn't look much different from mine. May I ask why you are using V_VAR1/2 types in your sketch? And why you send answer messages? Are you using home assistant (thats the only one where this is need imho)?
-
@Jan-Gatzke Thanks, I'll try that later although it doesn't look much different from mine. May I ask why you are using V_VAR1/2 types in your sketch? And why you send answer messages? Are you using home assistant (thats the only one where this is need imho)?
I am using Domoticz. This was the only way reading initial values from the controller. Directly requesting the value of a child did not work for me. Meanwhile MySensors support in Domoticz seems extremly bugy and uncomplete to me. I am going to give OpenHAB2 a try.
-
I am using Domoticz. This was the only way reading initial values from the controller. Directly requesting the value of a child did not work for me. Meanwhile MySensors support in Domoticz seems extremly bugy and uncomplete to me. I am going to give OpenHAB2 a try.
@Jan-Gatzke Ah ok nice to know. I am facing the same problem. RGBW is not that well supported in domoticz. I am currently trying to switch to openhab2 but having some problems with my RGBW nodes there too. Development on the plugin seems to be very active though. If you want to follow the discussion have a look at the forum thread here or on github ;)
Once I got everything up and running in openhab I'll post an update here.Meanwhile the newest sketch from my github should work with Home assistant too.
-
I just assembled my first OH! My... :grinning: board and realized that the V2 sketch doesn't work for me.
Anyways I'm posting a sample sketch for testing the board:#define RED_PIN 3 #define GREEN_PIN 5 #define BLUE_PIN 6 #define WHITE_PIN 9 #define ON 100 // Please, don't burn my eyes #define OFF 0 #define ON_INTERVAL (3*1000ul) void setup() { // Setting pins to output and low is not required for analogWrite. Serial.begin(115200); } void loop() { analogWrite(RED_PIN, ON); Serial.println(F("**RED**")); delay(ON_INTERVAL); analogWrite(RED_PIN, OFF); analogWrite(GREEN_PIN, ON); Serial.println(F("**GREEN**")); delay(ON_INTERVAL); analogWrite(GREEN_PIN, OFF); analogWrite(BLUE_PIN, ON); Serial.println(F("**BLUE**")); delay(ON_INTERVAL); analogWrite(BLUE_PIN, OFF); analogWrite(WHITE_PIN, ON); Serial.println(F("**WHITE**")); delay(ON_INTERVAL); analogWrite(WHITE_PIN, OFF); } -
I just assembled my first OH! My... :grinning: board and realized that the V2 sketch doesn't work for me.
Anyways I'm posting a sample sketch for testing the board:#define RED_PIN 3 #define GREEN_PIN 5 #define BLUE_PIN 6 #define WHITE_PIN 9 #define ON 100 // Please, don't burn my eyes #define OFF 0 #define ON_INTERVAL (3*1000ul) void setup() { // Setting pins to output and low is not required for analogWrite. Serial.begin(115200); } void loop() { analogWrite(RED_PIN, ON); Serial.println(F("**RED**")); delay(ON_INTERVAL); analogWrite(RED_PIN, OFF); analogWrite(GREEN_PIN, ON); Serial.println(F("**GREEN**")); delay(ON_INTERVAL); analogWrite(GREEN_PIN, OFF); analogWrite(BLUE_PIN, ON); Serial.println(F("**BLUE**")); delay(ON_INTERVAL); analogWrite(BLUE_PIN, OFF); analogWrite(WHITE_PIN, ON); Serial.println(F("**WHITE**")); delay(ON_INTERVAL); analogWrite(WHITE_PIN, OFF); }@Sergio-Rius Nice to hear! And good idea with the test sketch.
What exactly did not work with my sketch? I would really like to fix it (for others too).
-
@Sergio-Rius Nice to hear! And good idea with the test sketch.
What exactly did not work with my sketch? I would really like to fix it (for others too).
@LastSamurai I'm using Domoticz. With your sketch, turning on and off worked.
But whenever it had any rgb value, the white light was always 100% on. The RGB leds where all three lit at a time and never more than 20% but slightly responded to dimming control.The above code from @Jan-Gatzke works flawlessy. Even turns the white leds on when reaching the white band on the gradient.
Only I would like it to not turn off the color leds until the selected color is totally or almost white, so we could white-wash the selection.Oh, men... soldering those mosfets turned around was so difficult. :) I recommend the next who buys boards to use the new designs.
Give me some time and I'll give a turn to the sketch. But I'm still working on the "water-heating-solar-controller", and still have to assemble the energy monitor board, and do something with the meteo board.
-
@Sergio-Rius Nice to hear! And good idea with the test sketch.
What exactly did not work with my sketch? I would really like to fix it (for others too).
@LastSamurai I have some doubts on this code, can I ask you?
The change between color values is done by a fade, and I understand that you don't want a linear change but an exponential one. Right?One doubt i have is that I'm seeing that the fade is accomplished using a conversion array. So you are doing variable steps depending on the difference of value for each channel. Wouldn't be preferable to always take the same amount of time/steps doing the change?
Wouldn't be better to divide the difference for each value on the same steps and then doing the transformation. Then could be fixed without an array.
Sorry if I wrote something wrong. My english it's not so good.
-
@LastSamurai I have some doubts on this code, can I ask you?
The change between color values is done by a fade, and I understand that you don't want a linear change but an exponential one. Right?One doubt i have is that I'm seeing that the fade is accomplished using a conversion array. So you are doing variable steps depending on the difference of value for each channel. Wouldn't be preferable to always take the same amount of time/steps doing the change?
Wouldn't be better to divide the difference for each value on the same steps and then doing the transformation. Then could be fixed without an array.
Sorry if I wrote something wrong. My english it's not so good.
The problem with the linear fading was that a value of 100 almost looked the same as 150. So the goal was to make the fading look more linear. The logarythmic calculations needed for this cannot be done on an atmega 328p. (I tried it)
This is why I calculated the values with MS Excel and put them in an array.Making the fading process alway take the same time would be nice. Feel free to post your implementation. ;)
-
The problem with the linear fading was that a value of 100 almost looked the same as 150. So the goal was to make the fading look more linear. The logarythmic calculations needed for this cannot be done on an atmega 328p. (I tried it)
This is why I calculated the values with MS Excel and put them in an array.Making the fading process alway take the same time would be nice. Feel free to post your implementation. ;)
@Jan-Gatzke @LastSamurai I've been playing with the formula of the blog post written in comments on the sketch and I see that this isn't something trivial.
I think the code in the post has a misconception, that using 0-255 he missed that the graph data is not related to time, but pwm value.So a fixed table for conversion between pwm value and appreciated light has to be built. And you also arrived to this conclusion seeing the array.
I'm generating the array on the fly using the formula with 256 steps.
(In the blog code there's a bug caused by the mean of zero in intervals and the formula that causes max value to being reached. You have to sum one to interval before using on the formula.)I'm now trying to separate a loop for traveling the array that compensates for in between values so it can handle smaller steps->variable interval.
Sorry. Just thinking out loud.
-
I've been working on an sketch for this board. Somewhere in the path I started adding functionalities and it ended in a library. Perhaps it's way overkill, but I thought that could be easier add it to NodeManager like that.
It's based on the work done here and some more ideas around the network. Thanks to LastSamurai for the board and code and also to Jan.
You can find the sources there: https://github.com/SergioRius/RGBWDimmerThis thing includes a serial manager that I use myself, but you can remove it and delete all the code for debugging, and perhaps add yourselves if necessary.
Just clone the repo or download and install as a zip library on Arduino IDE.
The example works for the OH! MySensors RGBW board as is.It's very self explanatory in the code, but in essence:
- It can be used stand-alone or with mysensors
- You simply send to the commands and the class does all for you.
- Uses a non blocking system for the fading.
- Configurable fading time and resolution
- Several configurable fading curves
- Option for gamma (brightness + hue) calibration.
I'm currently debugging the fading curves equations other than linear, as the arduino mcu capabilities are tight and it's so easy to overflow it. Also I'm doing a program for calibrating the hue (arduino with leds and a rotary encoder for manually adjusting), so for now gamma only compensates brightness. You can change the values if you prefer. I'll be a good idea to lower the white channel.
It still lacks some memory optimization, but for now I'm scared about overflows. I got one of those and it was a two days nightmare and I had to revert to ints to get something running.
I'll soon add a stand alone sample and port to NodeManager.
For the while, for using it alone the minimal it's:#include "RGBWDimmer.h" RGBWDimmer myDimmer(1, 3, 5, 6, 9); ///< id (to remove), Red Pin, Green Pin, Blue Pin, White Pin bool JustDontBlockLoop = true; void loop() { if(JustDontBlockLoop) { myDimmer.setNewValues(255, 0, 150, 0); ///< RGBW decimal values. If you prefer hex, use setNewValuesHex myDimmer.StartFading(); JustDontBlockLoop = false; } myDimmer.loop(); }I hope you like it. And if you have any idea for adding functionality, please tell me.