Skip to content
  • MySensors
  • OpenHardware.io
  • Categories
  • Recent
  • Tags
  • Popular
Skins
  • Light
  • Brite
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • Default (No Skin)
  • No Skin
Collapse
Brand Logo
  1. Home
  2. My Project
  3. Rain Guage

Rain Guage

Scheduled Pinned Locked Moved My Project
128 Posts 23 Posters 110.3k Views 21 Watching
  • Oldest to Newest
  • Newest to Oldest
  • Most Votes
Reply
  • Reply as topic
Log in to reply
This topic has been deleted. Only users with topic management privileges can see it.
  • petewillP petewill

    Jim,

    I uploaded the code but it didn't seem to work for me. Do I need to upload some additional files to Vera? When I added the nodes a lot of my devices stopped displaying correctly (not just the newly added ones). They look like this:
    upload-f009544f-e06e-4001-abba-63de772a744f

    When I deleted the rain gauge nodes everything came back:
    upload-2a04de4c-b861-4e84-892d-2ae37591ad0e

    As I was looking at the code I came up with some additional questions:

    • There is a dayBuckets array but it doesn't seem to do anything in the code?

    • I also couldn't find "const unsigned long calibrateFactor" used anywhere.

    I fully admit I'm not a very good with code and I could be missing something. I was just trying to find how the variables were working together and being calculated.

    Thanks for all your help with this! I could not do it without you.

    Pete

    BulldogLowellB Offline
    BulldogLowellB Offline
    BulldogLowell
    Contest Winner
    wrote on last edited by
    #46

    @petewill said:

    As I was looking at the code I came up with some additional questions:

    There is a dayBuckets array but it doesn't seem to do anything in the code?

    I also couldn't find "const unsigned long calibrateFactor" used anywhere.

    dayBuckets[] was used in the old code and since I designed 1mm of rain per tip, I never had to implement calibration.

    1 Reply Last reply
    0
    • petewillP petewill

      @BulldogLowell

      Ok, I made the necessary changes for my application and I had a couple of questions along the way.

      • I have never worked with eeprom so I don't pretend to know anything about it (it's now on my list of things to research though). Anyway, I noticed above hek recommended using the "saveState()/loadState() function in the MySensors library". Is that necessary in your code or are we ok as is? It seems to be functioning ok for me when I compile it so maybe not...

      • I would like to trigger my rain sensor as soon as the first bucket has tipped (I have scenes that tell me to close the windows etc. when it's raining). Is changing the rainSensorThreshold value to 1 an appropriate way to do that or should I create another child node for my purposes? Maybe I should use rainRate in my PLEG instead?

      • My tipping bucket was pulled from an existing rain gauge and according to my calculations (which may be off) each bucket is .7mm of rain. I don't know much about unsigned long variables but I'm wondering if I need to change "const unsigned long calibrateFactor" to a float or something?

      Thanks for all your help!!

      Pete

      BulldogLowellB Offline
      BulldogLowellB Offline
      BulldogLowell
      Contest Winner
      wrote on last edited by
      #47

      @petewill said:

      I have never worked with eeprom so I don't pretend to know anything about it (it's now on my list of things to research though). Anyway, I noticed above hek recommended using the "saveState()/loadState() function in the MySensors library". Is that necessary in your code or are we ok as is? It seems to be functioning ok for me when I compile it so maybe not...

      I developed the code before hek integrated EEPROM in his libraries. This uses a circular buffer, so it would take me some time to reprogram for hek's library, so I just kept using the arduino EEPROM.h library I used to develop the original code.

      @petewill said:

      changing the rainSensorThreshold value to 1 an appropriate way to do that

      yes, I hardcoded boundaries, which you will will allow a minimum of 1 (one)

      @petewill said:

      My tipping bucket was pulled from an existing rain gauge and according to my calculations (which may be off) each bucket is .7mm of rain. I don't know much about unsigned long variables but I'm wondering if I need to change "const unsigned long calibrateFactor" to a float or something?

      Sorry, I never put a bucket calibration into my code, I lucked out with the 1mm per tip working.

      1 Reply Last reply
      0
      • petewillP Offline
        petewillP Offline
        petewill
        Admin
        wrote on last edited by
        #48

        @BulldogLowell Thanks for the responses! Ok, I suspected I was missing some implementation files. Thanks for them. Did you create them from scratch? If so, nice!

        I will take a look at the code to see if I can implement the calebrateFactor. I will most likely be back with more questions. :) Thanks again.

        My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

        1 Reply Last reply
        0
        • petewillP Offline
          petewillP Offline
          petewill
          Admin
          wrote on last edited by
          #49

          @BulldogLowell
          I have been doing lots of research and working to understand the code so it will work with the calibrateFactor and I have another question... Why is the "tipSensorPin" set to OUTPUT then INPUT? Does that have to do with the interrupt?

          pinMode(tipSensorPin, OUTPUT);
          attachInterrupt (1, sensorTipped, CHANGE); //* should this be RISING instead??
          pinMode(ledPin, OUTPUT);
          digitalWrite(ledPin, HIGH);
          gw.sendSketchInfo(SN, SV);
          gw.present(CHILD_ID_RAIN, S_RAIN);
          gw.present(CHILD_ID_TRIPPED_RAIN, S_MOTION);
          Serial.println(F("Sensor Presentation Complete"));
          pinMode(tipSensorPin, INPUT);
          

          Thanks again for your help! I'll post the full code back here when I have it working in case anyone else wants to use a different size tipping bucket.

          My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

          BulldogLowellB 1 Reply Last reply
          0
          • petewillP petewill

            @BulldogLowell
            I have been doing lots of research and working to understand the code so it will work with the calibrateFactor and I have another question... Why is the "tipSensorPin" set to OUTPUT then INPUT? Does that have to do with the interrupt?

            pinMode(tipSensorPin, OUTPUT);
            attachInterrupt (1, sensorTipped, CHANGE); //* should this be RISING instead??
            pinMode(ledPin, OUTPUT);
            digitalWrite(ledPin, HIGH);
            gw.sendSketchInfo(SN, SV);
            gw.present(CHILD_ID_RAIN, S_RAIN);
            gw.present(CHILD_ID_TRIPPED_RAIN, S_MOTION);
            Serial.println(F("Sensor Presentation Complete"));
            pinMode(tipSensorPin, INPUT);
            

            Thanks again for your help! I'll post the full code back here when I have it working in case anyone else wants to use a different size tipping bucket.

            BulldogLowellB Offline
            BulldogLowellB Offline
            BulldogLowell
            Contest Winner
            wrote on last edited by
            #50

            @petewill said:

            Why is the "tipSensorPin" set to OUTPUT then INPUT? Does that have to do with the interrupt?

            it looks a lot like a bonehead error in the code!!

            funny how the brain works, I never noticed that...

            1 Reply Last reply
            0
            • petewillP Offline
              petewillP Offline
              petewill
              Admin
              wrote on last edited by
              #51

              @BulldogLowell said:

              it looks a lot like a bonehead error in the code!!

              Ok, thanks. I make those constantly...

              I have been testing the code for the last couple of days and I think this is working but another set of eyes would be good. I added functionality to set the "calibrateFactor" to a decimal. I also updated the save/load EEPROM to work with the MySensors standard. It seems to be working in my testing but I'm no programmer.

              I also have two questions:

              1. Is it necessary to save/load "state" to/from EEPROM? It seems that from my testing the state is set when "measure" is calculated in this line: state = (measure >= rainSensorThreshold);. It seems that measure is evaluated when the sensor first loads and rainBucket [] is loaded from EEPROM. Hopefully that makes sense what I'm asking.

              2. I'm still trying to understand interrupts but I'm wondering if changing to "FALLING" would be more appropriate? Maybe it doesn't matter but I thought I'd check. Here is the line I'm referring to: attachInterrupt (1, sensorTipped, FALLING);

              Here is the code if you wanted to take a look:

               /*
               Arduino Tipping Bucket Rain Gauge
               
               April 26, 2015
              
               Version 1.01b for MySensors version 1.4.1
              
               Arduino Tipping Bucket Rain Gauge
              
               Utilizing a tipping bucket sensor, your Vera home automation controller and the MySensors.org
               gateway you can measure and sense local rain.  This sketch will create two devices on your
               Vera controller.  One will display your total precipitation for the last 24, 48, 72, 96 and 120
               hours.  The other, a sensor that changes state if there is recent rain (up to last 120 hours)
               above a threshold.  Both these settings are user definable.
              
               This sketch features the following:
              
               * Allows you to set the rain threshold in mm
               * Allows you to determine the interval window up to 120 hours.
               * Displays the last 24, 48, 72, 96 and 120 hours total rain in Variable1 through Variable5
                 of the Rain Sensor device
               * Configuration changes to Sensor device updated every 3 hours.
               * SHould run on any Arduino
               * Will retain Tripped/Not Tripped status and data in a power outage, saving small ammount
                 of data to EEPROM (Circular Buffer to maximize life of EEPROM)
               * There is a unique setup requirement necessary in order to properly present the Vera device
                 variables.  The details are outlined in the sketch below.
               * LED status indicator
              
               by BulldogLowell@gmail.com for free public use
              
               */
              #include <SPI.h>
              #include <MySensor.h>
              
              //*No longer need the EEPROM.h?
              //#include <EEPROM.h>
              
              #define NODE_ID 24
              #define SN "Rain Gauge"
              #define SV "1.01b"
              
              #define CHILD_ID_RAIN 3 
              #define CHILD_ID_TRIPPED_RAIN 4
              
              #define STATE_LOCATION 0 // location to save state to EEPROM
              #define EEPROM_BUFFER 1  // location of the EEPROM circular buffer
              #define BUFFER_LENGTH 121  // buffer plus the current hour
              //
              MySensor gw;
              //
              MyMessage msgRainRate(CHILD_ID_RAIN, V_RAINRATE);
              MyMessage msgRain(CHILD_ID_RAIN, V_RAIN);
              MyMessage msgRainVAR1(CHILD_ID_RAIN, V_VAR1);
              MyMessage msgRainVAR2(CHILD_ID_RAIN, V_VAR2);
              MyMessage msgRainVAR3(CHILD_ID_RAIN, V_VAR3);
              MyMessage msgRainVAR4(CHILD_ID_RAIN, V_VAR4);
              MyMessage msgRainVAR5(CHILD_ID_RAIN, V_VAR5);
              
              MyMessage msgTripped(CHILD_ID_TRIPPED_RAIN, V_TRIPPED);
              MyMessage msgTrippedVar1(CHILD_ID_TRIPPED_RAIN, V_VAR1);
              MyMessage msgTrippedVar2(CHILD_ID_TRIPPED_RAIN, V_VAR2);
              //
              boolean metric = false;
              //
              int eepromIndex;
              int tipSensorPin = 3; //Do not change (needed for interrupt)
              int ledPin = 5; //PWM capable required
              unsigned long dataMillis;
              unsigned long serialInterval = 10000UL;
              const unsigned long oneHour = 3600000UL;
              unsigned long lastTipTime;
              unsigned long lastBucketInterval;
              unsigned long startMillis;
              
              float rainBucket [120] ; // 5 days of data  //*120 hours = 5 days
              
              float calibrateFactor = .7; //Calibration in milimeters of rain per single tip.  Note: Limit to one decimal place or data may be truncated when saving to eeprom. 
              
              float rainRate = 0;
              volatile int tipBuffer = 0;
              byte rainWindow = 72;         //default rain window in hours
              int rainSensorThreshold = 10; //default rain sensor sensitivity in mm.  Will be overwritten with msgTrippedVar2. 
              byte state = 0;
              byte oldState = -1;
              //
              void setup()
              {
                gw.begin(getVariables, NODE_ID);
              
                pinMode(tipSensorPin, INPUT);
              
              //  attachInterrupt (1, sensorTipped, CHANGE); //* should this be FALLING instead??
                attachInterrupt (1, sensorTipped, FALLING);
                pinMode(ledPin, OUTPUT);
                digitalWrite(ledPin, HIGH);
                digitalWrite(tipSensorPin, HIGH); //ADDED. Activate internal pull-up 
                gw.sendSketchInfo(SN, SV);
                gw.present(CHILD_ID_RAIN, S_RAIN);
                gw.present(CHILD_ID_TRIPPED_RAIN, S_MOTION);
              //  Serial.println(F("Sensor Presentation Complete"));
                
              
                state = gw.loadState(STATE_LOCATION); //retreive prior state from EEPROM
              //  Serial.print("Tripped State (from EEPROM): ");
              //  Serial.println(state);
                
                gw.send(msgTripped.set(state==1?"1":"0"));
                delay(250);                             // recharge the capacitor
                //
                boolean isDataOnEeprom = false;
                for (int i = 0; i < BUFFER_LENGTH; i++)
                {
              
                  byte locator = gw.loadState(EEPROM_BUFFER + i); //New code
              
                  if (locator == 0xFF)  // found the EEPROM circular buffer index
                  {
                    eepromIndex = EEPROM_BUFFER + i;
                    //Now that we have the buffer index let's populate the rainBucket with data from eeprom
                    loadRainArray(eepromIndex); 
                    isDataOnEeprom = true;
              //      Serial.print("EEPROM Index ");
              //      Serial.println(eepromIndex);
                    break;
                  }
                }
              
                // reset the timers
                dataMillis = millis();
                startMillis = millis();
                lastTipTime = millis() - oneHour;  //will this work if millis() starts a 0??
                gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR1); //Get rainWindow from controller (Vera)
                delay(250);
                gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR2); //Get rainSensorThreshold from controller (Vera)
                delay(250);
              //  Serial.println("Radio Done");
              //  analogWrite(ledPin, 20);
              
              }
              //
              void loop()
              {
                gw.process();
                pulseLED();
              
                //
                // let's constantly check to see if the rain in the past rainWindow hours is greater than rainSensorThreshold
                //
              
                float measure = 0; // Check to see if we need to show sensor tripped in this block
              
                for (int i = 0; i < rainWindow; i++)
                {
                  measure += rainBucket [i];
              //    Serial.print("measure value (total rainBucket within rainWindow): ");
              //    Serial.println(measure);
                }
                state = (measure >= rainSensorThreshold);
              
                if (state != oldState)
                {
                  gw.send(msgTripped.set(state==1?"1":"0"));
                  delay(250);
                  gw.saveState(STATE_LOCATION, state); //New Code
              //    Serial.print("State Changed. Tripped State: ");
              //    Serial.println(state);
                  
                  oldState = state;
                }
                //
                // Now lets reset the rainRate to zero if no tips in the last hour
                //
                if (millis() - lastTipTime >= oneHour)// timeout for rain rate
                {
                  if (rainRate != 0)
                  {
                    rainRate = 0;
                    gw.send(msgRainRate.set(0));
                    delay(250);
                  }
                }
              
              ////////////////////////////
              ////Comment back in this block to enable Serial prints
              //  
              //  if ( (millis() - dataMillis) >= serialInterval)
              //  {
              //    for (int i = 24; i <= 120; i = i + 24)
              //    {
              //      updateSerialData(i);
              //    }
              //    dataMillis = millis();
              //  }
              //  
              ////////////////////////////
                
                
                if (tipBuffer > 0)
                {
              //     Serial.println("Sensor Tipped");
                  
              
                  //******Added calibrateFactor calculations here to account for calibrateFactor being different than 1
                  rainBucket [0] += calibrateFactor;
              //    Serial.print("rainBucket [0] value: ");
              //    Serial.println(rainBucket [0]);
                  
                  if (rainBucket [0] * calibrateFactor > 253) rainBucket[0] = 253; // odd occurance but prevent overflow}}
              
                  float dayTotal = 0;
                  for (int i = 0; i < 24; i++)
                  {
                    dayTotal = dayTotal + rainBucket [i];
                  }
                  
              //    Serial.print("dayTotal value: ");
              //    Serial.println(dayTotal);
                  
                  gw.send(msgRain.set(dayTotal,1));
                  delay(250);
                  unsigned long tipDelay = millis() - lastTipTime;
                  if (tipDelay <= oneHour)
                  {
              
                    rainRate = ((oneHour) / tipDelay) * calibrateFactor; //Is my math/logic correct here??
                
                    gw.send(msgRainRate.set(rainRate, 1));
              
              //      Serial.print("RainRate= ");
              //      Serial.println(rainRate);
                  }
              
                  //If this is the first trip in an hour send .1
                  else
                  {
                    gw.send(msgRainRate.set(0.1, 1));
                  }
                  lastTipTime = millis();
                  tipBuffer--;
                }
                if (millis() - startMillis >= oneHour)
                {
              //    Serial.println("One hour elapsed.");
                  //EEPROM write last value
                  //Converting rainBucket to byte.  Note: limited to one decimal place.
                  //Can this math be simplified?? 
                  float convertRainBucket = rainBucket[0] * 10;
                  if (convertRainBucket  > 253) convertRainBucket = 253; // odd occurance but prevent overflow
                  byte eepromRainBucket = (byte)convertRainBucket;
                  gw.saveState(eepromIndex, eepromRainBucket);
              
                  eepromIndex++;
                  if (eepromIndex > EEPROM_BUFFER + BUFFER_LENGTH) eepromIndex = EEPROM_BUFFER;
              //    Serial.print("Writing to EEPROM.  Index: ");
              //    Serial.println(eepromIndex);
                  gw.saveState(eepromIndex, 0xFF);
                  
                  for (int i = BUFFER_LENGTH - 1; i >= 0; i--)//cascade an hour of values
                  {
                    rainBucket [i + 1] = rainBucket [i];
                  }
                  rainBucket[0] = 0;
                  gw.send(msgRain.set(tipCounter(24),1));// send 24hr tips
                  delay(250);
                  transmitRainData(); // send all of the 5 buckets of data to controller
                  startMillis = millis();
                }
              }
              //
              void sensorTipped()
              {
                static unsigned long last_interrupt_time = 0;
                unsigned long interrupt_time = millis();
                if (interrupt_time - last_interrupt_time > 200)
                {
                  tipBuffer++;
                }
                last_interrupt_time = interrupt_time;
              }
              //
              float tipCounter(int hours)
              {
                float tipCount = 0;
                for ( int i = 0; i < hours; i++)
                {
                  tipCount = tipCount + rainBucket [i];
                }
                return tipCount;
              }
              //
              void updateSerialData(int x)
              {
                Serial.print(F("Tips last "));
                Serial.print(x);
                Serial.print(F(" hours: "));
                float tipCount = 0;
                for (int i = 0; i < x; i++)
                {
                  tipCount = tipCount + rainBucket [i];
                }
                Serial.println(tipCount);
              }
              void loadRainArray(int value)
              {
                for (int i = 0; i < BUFFER_LENGTH - 1; i++)
                {
                  value--;
                  Serial.print("EEPROM location: ");
                  Serial.println(value);
                  if (value < EEPROM_BUFFER)
                  {
                    value = EEPROM_BUFFER + BUFFER_LENGTH;
                  }
                  float rainValue = gw.loadState(value);
              
                  if (rainValue < 255)
                  {
                    //Convert back to decimal value
                    float decimalRainValue = rainValue/10;
                    rainBucket[i] = decimalRainValue;
                  }
                  else
                  {
                    rainBucket [i] = 0;
                  }
              //    Serial.print("rainBucket[ value: ");
              //    Serial.print(i);
              //    Serial.print("] value: ");
              //    Serial.println(rainBucket[i]);
                }
              }
              
              void transmitRainData(void)
              {
                float rainUpdateTotal = 0;
                for (int i = 0; i < 24; i++)
                {
                  rainUpdateTotal += rainBucket[i];
                }
                gw.send(msgRainVAR1.set(rainUpdateTotal,1));
                delay(250);
                for (int i = 24; i < 48; i++)
                {
                  rainUpdateTotal += rainBucket[i];
                }
                gw.send(msgRainVAR2.set(rainUpdateTotal,1));
                delay(250);
                for (int i = 48; i < 72; i++)
                {
                  rainUpdateTotal += rainBucket[i];
                }
                gw.send(msgRainVAR3.set(rainUpdateTotal,1));
              
                delay(250);
                for (int i = 72; i < 96; i++)
                {
                  rainUpdateTotal += rainBucket[i];
                }
                gw.send(msgRainVAR4.set(rainUpdateTotal,1));
              
                delay(250);
                for (int i = 96; i < 120; i++)
                {
                  rainUpdateTotal += rainBucket[i];
                }
                gw.send(msgRainVAR5.set(rainUpdateTotal,1));
                delay(250);
              }
              
              void getVariables(const MyMessage &message)
              {
                if (message.sensor == CHILD_ID_RAIN)
                {
                  // nothing to do here
                }
                else if (message.sensor == CHILD_ID_TRIPPED_RAIN)
                {
                  if (message.type == V_VAR1)
                  {
                    rainWindow = atoi(message.data);
                    if (rainWindow > 120)
                    {
                      rainWindow = 120;
                    }
                    else if (rainWindow < 6)
                    {
                      rainWindow = 6;
                    }
                    if (rainWindow != atoi(message.data))   // if I changed the value back inside the boundries, push that number back to Vera
                    {
                      gw.send(msgTrippedVar1.set(rainWindow));
                    }
                  }
                  else if (message.type == V_VAR2)
                  {
                    rainSensorThreshold = atoi(message.data);
                    if (rainSensorThreshold > 1000)
                    {
                      rainSensorThreshold = 1000;
                    }
                    else if (rainSensorThreshold < 1)
                    {
                      rainSensorThreshold = 1;
                    }
                    if (rainSensorThreshold != atoi(message.data))  // if I changed the value back inside the boundries, push that number back to Vera
                    {
                      gw.send(msgTrippedVar2.set(rainSensorThreshold));
                    }
                  }
                }
              }
              void pulseLED(void)
              {
                static boolean ledState = true;
                static unsigned long pulseStart = millis();
                if (millis() - pulseStart < 500UL)
                {
                  digitalWrite(ledPin, !ledState);
                  pulseStart = millis();
                }
              }
              

              My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

              BulldogLowellB 2 Replies Last reply
              1
              • hekH Offline
                hekH Offline
                hek
                Admin
                wrote on last edited by
                #52

                This starts to look really good. Maybe we should lift this into the examples on github?

                Just wish someone could sell the tipping bucket hardware. :)

                1 Reply Last reply
                0
                • petewillP petewill

                  @BulldogLowell said:

                  it looks a lot like a bonehead error in the code!!

                  Ok, thanks. I make those constantly...

                  I have been testing the code for the last couple of days and I think this is working but another set of eyes would be good. I added functionality to set the "calibrateFactor" to a decimal. I also updated the save/load EEPROM to work with the MySensors standard. It seems to be working in my testing but I'm no programmer.

                  I also have two questions:

                  1. Is it necessary to save/load "state" to/from EEPROM? It seems that from my testing the state is set when "measure" is calculated in this line: state = (measure >= rainSensorThreshold);. It seems that measure is evaluated when the sensor first loads and rainBucket [] is loaded from EEPROM. Hopefully that makes sense what I'm asking.

                  2. I'm still trying to understand interrupts but I'm wondering if changing to "FALLING" would be more appropriate? Maybe it doesn't matter but I thought I'd check. Here is the line I'm referring to: attachInterrupt (1, sensorTipped, FALLING);

                  Here is the code if you wanted to take a look:

                   /*
                   Arduino Tipping Bucket Rain Gauge
                   
                   April 26, 2015
                  
                   Version 1.01b for MySensors version 1.4.1
                  
                   Arduino Tipping Bucket Rain Gauge
                  
                   Utilizing a tipping bucket sensor, your Vera home automation controller and the MySensors.org
                   gateway you can measure and sense local rain.  This sketch will create two devices on your
                   Vera controller.  One will display your total precipitation for the last 24, 48, 72, 96 and 120
                   hours.  The other, a sensor that changes state if there is recent rain (up to last 120 hours)
                   above a threshold.  Both these settings are user definable.
                  
                   This sketch features the following:
                  
                   * Allows you to set the rain threshold in mm
                   * Allows you to determine the interval window up to 120 hours.
                   * Displays the last 24, 48, 72, 96 and 120 hours total rain in Variable1 through Variable5
                     of the Rain Sensor device
                   * Configuration changes to Sensor device updated every 3 hours.
                   * SHould run on any Arduino
                   * Will retain Tripped/Not Tripped status and data in a power outage, saving small ammount
                     of data to EEPROM (Circular Buffer to maximize life of EEPROM)
                   * There is a unique setup requirement necessary in order to properly present the Vera device
                     variables.  The details are outlined in the sketch below.
                   * LED status indicator
                  
                   by BulldogLowell@gmail.com for free public use
                  
                   */
                  #include <SPI.h>
                  #include <MySensor.h>
                  
                  //*No longer need the EEPROM.h?
                  //#include <EEPROM.h>
                  
                  #define NODE_ID 24
                  #define SN "Rain Gauge"
                  #define SV "1.01b"
                  
                  #define CHILD_ID_RAIN 3 
                  #define CHILD_ID_TRIPPED_RAIN 4
                  
                  #define STATE_LOCATION 0 // location to save state to EEPROM
                  #define EEPROM_BUFFER 1  // location of the EEPROM circular buffer
                  #define BUFFER_LENGTH 121  // buffer plus the current hour
                  //
                  MySensor gw;
                  //
                  MyMessage msgRainRate(CHILD_ID_RAIN, V_RAINRATE);
                  MyMessage msgRain(CHILD_ID_RAIN, V_RAIN);
                  MyMessage msgRainVAR1(CHILD_ID_RAIN, V_VAR1);
                  MyMessage msgRainVAR2(CHILD_ID_RAIN, V_VAR2);
                  MyMessage msgRainVAR3(CHILD_ID_RAIN, V_VAR3);
                  MyMessage msgRainVAR4(CHILD_ID_RAIN, V_VAR4);
                  MyMessage msgRainVAR5(CHILD_ID_RAIN, V_VAR5);
                  
                  MyMessage msgTripped(CHILD_ID_TRIPPED_RAIN, V_TRIPPED);
                  MyMessage msgTrippedVar1(CHILD_ID_TRIPPED_RAIN, V_VAR1);
                  MyMessage msgTrippedVar2(CHILD_ID_TRIPPED_RAIN, V_VAR2);
                  //
                  boolean metric = false;
                  //
                  int eepromIndex;
                  int tipSensorPin = 3; //Do not change (needed for interrupt)
                  int ledPin = 5; //PWM capable required
                  unsigned long dataMillis;
                  unsigned long serialInterval = 10000UL;
                  const unsigned long oneHour = 3600000UL;
                  unsigned long lastTipTime;
                  unsigned long lastBucketInterval;
                  unsigned long startMillis;
                  
                  float rainBucket [120] ; // 5 days of data  //*120 hours = 5 days
                  
                  float calibrateFactor = .7; //Calibration in milimeters of rain per single tip.  Note: Limit to one decimal place or data may be truncated when saving to eeprom. 
                  
                  float rainRate = 0;
                  volatile int tipBuffer = 0;
                  byte rainWindow = 72;         //default rain window in hours
                  int rainSensorThreshold = 10; //default rain sensor sensitivity in mm.  Will be overwritten with msgTrippedVar2. 
                  byte state = 0;
                  byte oldState = -1;
                  //
                  void setup()
                  {
                    gw.begin(getVariables, NODE_ID);
                  
                    pinMode(tipSensorPin, INPUT);
                  
                  //  attachInterrupt (1, sensorTipped, CHANGE); //* should this be FALLING instead??
                    attachInterrupt (1, sensorTipped, FALLING);
                    pinMode(ledPin, OUTPUT);
                    digitalWrite(ledPin, HIGH);
                    digitalWrite(tipSensorPin, HIGH); //ADDED. Activate internal pull-up 
                    gw.sendSketchInfo(SN, SV);
                    gw.present(CHILD_ID_RAIN, S_RAIN);
                    gw.present(CHILD_ID_TRIPPED_RAIN, S_MOTION);
                  //  Serial.println(F("Sensor Presentation Complete"));
                    
                  
                    state = gw.loadState(STATE_LOCATION); //retreive prior state from EEPROM
                  //  Serial.print("Tripped State (from EEPROM): ");
                  //  Serial.println(state);
                    
                    gw.send(msgTripped.set(state==1?"1":"0"));
                    delay(250);                             // recharge the capacitor
                    //
                    boolean isDataOnEeprom = false;
                    for (int i = 0; i < BUFFER_LENGTH; i++)
                    {
                  
                      byte locator = gw.loadState(EEPROM_BUFFER + i); //New code
                  
                      if (locator == 0xFF)  // found the EEPROM circular buffer index
                      {
                        eepromIndex = EEPROM_BUFFER + i;
                        //Now that we have the buffer index let's populate the rainBucket with data from eeprom
                        loadRainArray(eepromIndex); 
                        isDataOnEeprom = true;
                  //      Serial.print("EEPROM Index ");
                  //      Serial.println(eepromIndex);
                        break;
                      }
                    }
                  
                    // reset the timers
                    dataMillis = millis();
                    startMillis = millis();
                    lastTipTime = millis() - oneHour;  //will this work if millis() starts a 0??
                    gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR1); //Get rainWindow from controller (Vera)
                    delay(250);
                    gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR2); //Get rainSensorThreshold from controller (Vera)
                    delay(250);
                  //  Serial.println("Radio Done");
                  //  analogWrite(ledPin, 20);
                  
                  }
                  //
                  void loop()
                  {
                    gw.process();
                    pulseLED();
                  
                    //
                    // let's constantly check to see if the rain in the past rainWindow hours is greater than rainSensorThreshold
                    //
                  
                    float measure = 0; // Check to see if we need to show sensor tripped in this block
                  
                    for (int i = 0; i < rainWindow; i++)
                    {
                      measure += rainBucket [i];
                  //    Serial.print("measure value (total rainBucket within rainWindow): ");
                  //    Serial.println(measure);
                    }
                    state = (measure >= rainSensorThreshold);
                  
                    if (state != oldState)
                    {
                      gw.send(msgTripped.set(state==1?"1":"0"));
                      delay(250);
                      gw.saveState(STATE_LOCATION, state); //New Code
                  //    Serial.print("State Changed. Tripped State: ");
                  //    Serial.println(state);
                      
                      oldState = state;
                    }
                    //
                    // Now lets reset the rainRate to zero if no tips in the last hour
                    //
                    if (millis() - lastTipTime >= oneHour)// timeout for rain rate
                    {
                      if (rainRate != 0)
                      {
                        rainRate = 0;
                        gw.send(msgRainRate.set(0));
                        delay(250);
                      }
                    }
                  
                  ////////////////////////////
                  ////Comment back in this block to enable Serial prints
                  //  
                  //  if ( (millis() - dataMillis) >= serialInterval)
                  //  {
                  //    for (int i = 24; i <= 120; i = i + 24)
                  //    {
                  //      updateSerialData(i);
                  //    }
                  //    dataMillis = millis();
                  //  }
                  //  
                  ////////////////////////////
                    
                    
                    if (tipBuffer > 0)
                    {
                  //     Serial.println("Sensor Tipped");
                      
                  
                      //******Added calibrateFactor calculations here to account for calibrateFactor being different than 1
                      rainBucket [0] += calibrateFactor;
                  //    Serial.print("rainBucket [0] value: ");
                  //    Serial.println(rainBucket [0]);
                      
                      if (rainBucket [0] * calibrateFactor > 253) rainBucket[0] = 253; // odd occurance but prevent overflow}}
                  
                      float dayTotal = 0;
                      for (int i = 0; i < 24; i++)
                      {
                        dayTotal = dayTotal + rainBucket [i];
                      }
                      
                  //    Serial.print("dayTotal value: ");
                  //    Serial.println(dayTotal);
                      
                      gw.send(msgRain.set(dayTotal,1));
                      delay(250);
                      unsigned long tipDelay = millis() - lastTipTime;
                      if (tipDelay <= oneHour)
                      {
                  
                        rainRate = ((oneHour) / tipDelay) * calibrateFactor; //Is my math/logic correct here??
                    
                        gw.send(msgRainRate.set(rainRate, 1));
                  
                  //      Serial.print("RainRate= ");
                  //      Serial.println(rainRate);
                      }
                  
                      //If this is the first trip in an hour send .1
                      else
                      {
                        gw.send(msgRainRate.set(0.1, 1));
                      }
                      lastTipTime = millis();
                      tipBuffer--;
                    }
                    if (millis() - startMillis >= oneHour)
                    {
                  //    Serial.println("One hour elapsed.");
                      //EEPROM write last value
                      //Converting rainBucket to byte.  Note: limited to one decimal place.
                      //Can this math be simplified?? 
                      float convertRainBucket = rainBucket[0] * 10;
                      if (convertRainBucket  > 253) convertRainBucket = 253; // odd occurance but prevent overflow
                      byte eepromRainBucket = (byte)convertRainBucket;
                      gw.saveState(eepromIndex, eepromRainBucket);
                  
                      eepromIndex++;
                      if (eepromIndex > EEPROM_BUFFER + BUFFER_LENGTH) eepromIndex = EEPROM_BUFFER;
                  //    Serial.print("Writing to EEPROM.  Index: ");
                  //    Serial.println(eepromIndex);
                      gw.saveState(eepromIndex, 0xFF);
                      
                      for (int i = BUFFER_LENGTH - 1; i >= 0; i--)//cascade an hour of values
                      {
                        rainBucket [i + 1] = rainBucket [i];
                      }
                      rainBucket[0] = 0;
                      gw.send(msgRain.set(tipCounter(24),1));// send 24hr tips
                      delay(250);
                      transmitRainData(); // send all of the 5 buckets of data to controller
                      startMillis = millis();
                    }
                  }
                  //
                  void sensorTipped()
                  {
                    static unsigned long last_interrupt_time = 0;
                    unsigned long interrupt_time = millis();
                    if (interrupt_time - last_interrupt_time > 200)
                    {
                      tipBuffer++;
                    }
                    last_interrupt_time = interrupt_time;
                  }
                  //
                  float tipCounter(int hours)
                  {
                    float tipCount = 0;
                    for ( int i = 0; i < hours; i++)
                    {
                      tipCount = tipCount + rainBucket [i];
                    }
                    return tipCount;
                  }
                  //
                  void updateSerialData(int x)
                  {
                    Serial.print(F("Tips last "));
                    Serial.print(x);
                    Serial.print(F(" hours: "));
                    float tipCount = 0;
                    for (int i = 0; i < x; i++)
                    {
                      tipCount = tipCount + rainBucket [i];
                    }
                    Serial.println(tipCount);
                  }
                  void loadRainArray(int value)
                  {
                    for (int i = 0; i < BUFFER_LENGTH - 1; i++)
                    {
                      value--;
                      Serial.print("EEPROM location: ");
                      Serial.println(value);
                      if (value < EEPROM_BUFFER)
                      {
                        value = EEPROM_BUFFER + BUFFER_LENGTH;
                      }
                      float rainValue = gw.loadState(value);
                  
                      if (rainValue < 255)
                      {
                        //Convert back to decimal value
                        float decimalRainValue = rainValue/10;
                        rainBucket[i] = decimalRainValue;
                      }
                      else
                      {
                        rainBucket [i] = 0;
                      }
                  //    Serial.print("rainBucket[ value: ");
                  //    Serial.print(i);
                  //    Serial.print("] value: ");
                  //    Serial.println(rainBucket[i]);
                    }
                  }
                  
                  void transmitRainData(void)
                  {
                    float rainUpdateTotal = 0;
                    for (int i = 0; i < 24; i++)
                    {
                      rainUpdateTotal += rainBucket[i];
                    }
                    gw.send(msgRainVAR1.set(rainUpdateTotal,1));
                    delay(250);
                    for (int i = 24; i < 48; i++)
                    {
                      rainUpdateTotal += rainBucket[i];
                    }
                    gw.send(msgRainVAR2.set(rainUpdateTotal,1));
                    delay(250);
                    for (int i = 48; i < 72; i++)
                    {
                      rainUpdateTotal += rainBucket[i];
                    }
                    gw.send(msgRainVAR3.set(rainUpdateTotal,1));
                  
                    delay(250);
                    for (int i = 72; i < 96; i++)
                    {
                      rainUpdateTotal += rainBucket[i];
                    }
                    gw.send(msgRainVAR4.set(rainUpdateTotal,1));
                  
                    delay(250);
                    for (int i = 96; i < 120; i++)
                    {
                      rainUpdateTotal += rainBucket[i];
                    }
                    gw.send(msgRainVAR5.set(rainUpdateTotal,1));
                    delay(250);
                  }
                  
                  void getVariables(const MyMessage &message)
                  {
                    if (message.sensor == CHILD_ID_RAIN)
                    {
                      // nothing to do here
                    }
                    else if (message.sensor == CHILD_ID_TRIPPED_RAIN)
                    {
                      if (message.type == V_VAR1)
                      {
                        rainWindow = atoi(message.data);
                        if (rainWindow > 120)
                        {
                          rainWindow = 120;
                        }
                        else if (rainWindow < 6)
                        {
                          rainWindow = 6;
                        }
                        if (rainWindow != atoi(message.data))   // if I changed the value back inside the boundries, push that number back to Vera
                        {
                          gw.send(msgTrippedVar1.set(rainWindow));
                        }
                      }
                      else if (message.type == V_VAR2)
                      {
                        rainSensorThreshold = atoi(message.data);
                        if (rainSensorThreshold > 1000)
                        {
                          rainSensorThreshold = 1000;
                        }
                        else if (rainSensorThreshold < 1)
                        {
                          rainSensorThreshold = 1;
                        }
                        if (rainSensorThreshold != atoi(message.data))  // if I changed the value back inside the boundries, push that number back to Vera
                        {
                          gw.send(msgTrippedVar2.set(rainSensorThreshold));
                        }
                      }
                    }
                  }
                  void pulseLED(void)
                  {
                    static boolean ledState = true;
                    static unsigned long pulseStart = millis();
                    if (millis() - pulseStart < 500UL)
                    {
                      digitalWrite(ledPin, !ledState);
                      pulseStart = millis();
                    }
                  }
                  
                  BulldogLowellB Offline
                  BulldogLowellB Offline
                  BulldogLowell
                  Contest Winner
                  wrote on last edited by
                  #53

                  @petewill

                  Pete, let me look it all over again and see if we can get the calibration working. I think the EEPROM part can be updated for @hek 's addition into the mySensors library.

                  @hek maybe we can do a 100% printed design for the collector/funnel and mechanism. and offer that on github as well.

                  hekH petewillP 2 Replies Last reply
                  0
                  • BulldogLowellB BulldogLowell

                    @petewill

                    Pete, let me look it all over again and see if we can get the calibration working. I think the EEPROM part can be updated for @hek 's addition into the mySensors library.

                    @hek maybe we can do a 100% printed design for the collector/funnel and mechanism. and offer that on github as well.

                    hekH Offline
                    hekH Offline
                    hek
                    Admin
                    wrote on last edited by
                    #54

                    @BulldogLowell said:

                    @hek maybe we can do a 100% printed design for the collector/funnel and mechanism. and offer that on github as well.

                    Good idea. We could probably just place the stl-file in the folder together with ino-file. Let me know when you feel ready.

                    1 Reply Last reply
                    0
                    • BulldogLowellB BulldogLowell

                      @petewill

                      Pete, let me look it all over again and see if we can get the calibration working. I think the EEPROM part can be updated for @hek 's addition into the mySensors library.

                      @hek maybe we can do a 100% printed design for the collector/funnel and mechanism. and offer that on github as well.

                      petewillP Offline
                      petewillP Offline
                      petewill
                      Admin
                      wrote on last edited by
                      #55

                      @BulldogLowell said:

                      Pete, let me look it all over again and see if we can get the calibration working. I think the EEPROM part can be updated for @hek 's addition into the mySensors library.

                      Great! I think it should be working now (it did in my testing) but it could probably be cleaned up to work more efficiently.

                      @hek maybe we can do a 100% printed design for the collector/funnel and mechanism. and offer that on github as well.

                      That would be great! I was also hoping to make a step by step video of how I got mine all set up (with Jim's permission of course). That way pretty much any collector could be used when the calibration setting is changed. I was able to find one really cheap at a local store. The 3d print option would be really cool though.

                      @BulldogLowell one thing I forgot to mention in my post above is that I don't think the rainWindow and rainSensorThreshold are pulled from Vera except for when it's initially powered on. I thought I remember reading somewhere that it was designed to check every 3 hours. Maybe I'm remembering incorrectly though. I can make the change if you want but I wanted to check with you first.

                      My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

                      BulldogLowellB 1 Reply Last reply
                      0
                      • petewillP petewill

                        @BulldogLowell said:

                        Pete, let me look it all over again and see if we can get the calibration working. I think the EEPROM part can be updated for @hek 's addition into the mySensors library.

                        Great! I think it should be working now (it did in my testing) but it could probably be cleaned up to work more efficiently.

                        @hek maybe we can do a 100% printed design for the collector/funnel and mechanism. and offer that on github as well.

                        That would be great! I was also hoping to make a step by step video of how I got mine all set up (with Jim's permission of course). That way pretty much any collector could be used when the calibration setting is changed. I was able to find one really cheap at a local store. The 3d print option would be really cool though.

                        @BulldogLowell one thing I forgot to mention in my post above is that I don't think the rainWindow and rainSensorThreshold are pulled from Vera except for when it's initially powered on. I thought I remember reading somewhere that it was designed to check every 3 hours. Maybe I'm remembering incorrectly though. I can make the change if you want but I wanted to check with you first.

                        BulldogLowellB Offline
                        BulldogLowellB Offline
                        BulldogLowell
                        Contest Winner
                        wrote on last edited by BulldogLowell
                        #56

                        @petewill said:

                        @BulldogLowell one thing I forgot to mention in my post above is that I don't think the rainWindow and rainSensorThreshold are pulled from Vera except for when it's initially powered on. I thought I remember reading somewhere that it was designed to check every 3 hours. Maybe I'm remembering incorrectly though. I can make the change if you want but I wanted to check with you first.

                        yeah, we need to add the:

                        gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR1);
                        gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR2);
                        

                        into a millis( ) timer, once an hour works, I'd think.

                        Try that out in here:

                        if (millis() - startMillis >= oneHour)
                        

                        Once you get it done, let's take @hek 's idea and put it into github. I can clean it up, get Serial printing on a toggle and we can straighten out all the questions you had in the code.

                        Thanks for pushing this forward, it is good to get more eyes on it (remember, I may need to reinstall in my working sensor someday!)

                        @hek,

                        i think @korttoma has NetAtmo, maybe he will give us some rough dimensions for that size (the one I make was the standard eight inch diameter used by the US weather services, but a more portable version may be better). @korttoma?

                        Once I get that, I will work on a 3D printable design (for many to contribute I hope).

                        @petewill

                        we also need to create image files for the Sensor, but for now, if you want to do the tutorial, I say go for it!

                        1 Reply Last reply
                        0
                        • petewillP petewill

                          @BulldogLowell said:

                          it looks a lot like a bonehead error in the code!!

                          Ok, thanks. I make those constantly...

                          I have been testing the code for the last couple of days and I think this is working but another set of eyes would be good. I added functionality to set the "calibrateFactor" to a decimal. I also updated the save/load EEPROM to work with the MySensors standard. It seems to be working in my testing but I'm no programmer.

                          I also have two questions:

                          1. Is it necessary to save/load "state" to/from EEPROM? It seems that from my testing the state is set when "measure" is calculated in this line: state = (measure >= rainSensorThreshold);. It seems that measure is evaluated when the sensor first loads and rainBucket [] is loaded from EEPROM. Hopefully that makes sense what I'm asking.

                          2. I'm still trying to understand interrupts but I'm wondering if changing to "FALLING" would be more appropriate? Maybe it doesn't matter but I thought I'd check. Here is the line I'm referring to: attachInterrupt (1, sensorTipped, FALLING);

                          Here is the code if you wanted to take a look:

                           /*
                           Arduino Tipping Bucket Rain Gauge
                           
                           April 26, 2015
                          
                           Version 1.01b for MySensors version 1.4.1
                          
                           Arduino Tipping Bucket Rain Gauge
                          
                           Utilizing a tipping bucket sensor, your Vera home automation controller and the MySensors.org
                           gateway you can measure and sense local rain.  This sketch will create two devices on your
                           Vera controller.  One will display your total precipitation for the last 24, 48, 72, 96 and 120
                           hours.  The other, a sensor that changes state if there is recent rain (up to last 120 hours)
                           above a threshold.  Both these settings are user definable.
                          
                           This sketch features the following:
                          
                           * Allows you to set the rain threshold in mm
                           * Allows you to determine the interval window up to 120 hours.
                           * Displays the last 24, 48, 72, 96 and 120 hours total rain in Variable1 through Variable5
                             of the Rain Sensor device
                           * Configuration changes to Sensor device updated every 3 hours.
                           * SHould run on any Arduino
                           * Will retain Tripped/Not Tripped status and data in a power outage, saving small ammount
                             of data to EEPROM (Circular Buffer to maximize life of EEPROM)
                           * There is a unique setup requirement necessary in order to properly present the Vera device
                             variables.  The details are outlined in the sketch below.
                           * LED status indicator
                          
                           by BulldogLowell@gmail.com for free public use
                          
                           */
                          #include <SPI.h>
                          #include <MySensor.h>
                          
                          //*No longer need the EEPROM.h?
                          //#include <EEPROM.h>
                          
                          #define NODE_ID 24
                          #define SN "Rain Gauge"
                          #define SV "1.01b"
                          
                          #define CHILD_ID_RAIN 3 
                          #define CHILD_ID_TRIPPED_RAIN 4
                          
                          #define STATE_LOCATION 0 // location to save state to EEPROM
                          #define EEPROM_BUFFER 1  // location of the EEPROM circular buffer
                          #define BUFFER_LENGTH 121  // buffer plus the current hour
                          //
                          MySensor gw;
                          //
                          MyMessage msgRainRate(CHILD_ID_RAIN, V_RAINRATE);
                          MyMessage msgRain(CHILD_ID_RAIN, V_RAIN);
                          MyMessage msgRainVAR1(CHILD_ID_RAIN, V_VAR1);
                          MyMessage msgRainVAR2(CHILD_ID_RAIN, V_VAR2);
                          MyMessage msgRainVAR3(CHILD_ID_RAIN, V_VAR3);
                          MyMessage msgRainVAR4(CHILD_ID_RAIN, V_VAR4);
                          MyMessage msgRainVAR5(CHILD_ID_RAIN, V_VAR5);
                          
                          MyMessage msgTripped(CHILD_ID_TRIPPED_RAIN, V_TRIPPED);
                          MyMessage msgTrippedVar1(CHILD_ID_TRIPPED_RAIN, V_VAR1);
                          MyMessage msgTrippedVar2(CHILD_ID_TRIPPED_RAIN, V_VAR2);
                          //
                          boolean metric = false;
                          //
                          int eepromIndex;
                          int tipSensorPin = 3; //Do not change (needed for interrupt)
                          int ledPin = 5; //PWM capable required
                          unsigned long dataMillis;
                          unsigned long serialInterval = 10000UL;
                          const unsigned long oneHour = 3600000UL;
                          unsigned long lastTipTime;
                          unsigned long lastBucketInterval;
                          unsigned long startMillis;
                          
                          float rainBucket [120] ; // 5 days of data  //*120 hours = 5 days
                          
                          float calibrateFactor = .7; //Calibration in milimeters of rain per single tip.  Note: Limit to one decimal place or data may be truncated when saving to eeprom. 
                          
                          float rainRate = 0;
                          volatile int tipBuffer = 0;
                          byte rainWindow = 72;         //default rain window in hours
                          int rainSensorThreshold = 10; //default rain sensor sensitivity in mm.  Will be overwritten with msgTrippedVar2. 
                          byte state = 0;
                          byte oldState = -1;
                          //
                          void setup()
                          {
                            gw.begin(getVariables, NODE_ID);
                          
                            pinMode(tipSensorPin, INPUT);
                          
                          //  attachInterrupt (1, sensorTipped, CHANGE); //* should this be FALLING instead??
                            attachInterrupt (1, sensorTipped, FALLING);
                            pinMode(ledPin, OUTPUT);
                            digitalWrite(ledPin, HIGH);
                            digitalWrite(tipSensorPin, HIGH); //ADDED. Activate internal pull-up 
                            gw.sendSketchInfo(SN, SV);
                            gw.present(CHILD_ID_RAIN, S_RAIN);
                            gw.present(CHILD_ID_TRIPPED_RAIN, S_MOTION);
                          //  Serial.println(F("Sensor Presentation Complete"));
                            
                          
                            state = gw.loadState(STATE_LOCATION); //retreive prior state from EEPROM
                          //  Serial.print("Tripped State (from EEPROM): ");
                          //  Serial.println(state);
                            
                            gw.send(msgTripped.set(state==1?"1":"0"));
                            delay(250);                             // recharge the capacitor
                            //
                            boolean isDataOnEeprom = false;
                            for (int i = 0; i < BUFFER_LENGTH; i++)
                            {
                          
                              byte locator = gw.loadState(EEPROM_BUFFER + i); //New code
                          
                              if (locator == 0xFF)  // found the EEPROM circular buffer index
                              {
                                eepromIndex = EEPROM_BUFFER + i;
                                //Now that we have the buffer index let's populate the rainBucket with data from eeprom
                                loadRainArray(eepromIndex); 
                                isDataOnEeprom = true;
                          //      Serial.print("EEPROM Index ");
                          //      Serial.println(eepromIndex);
                                break;
                              }
                            }
                          
                            // reset the timers
                            dataMillis = millis();
                            startMillis = millis();
                            lastTipTime = millis() - oneHour;  //will this work if millis() starts a 0??
                            gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR1); //Get rainWindow from controller (Vera)
                            delay(250);
                            gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR2); //Get rainSensorThreshold from controller (Vera)
                            delay(250);
                          //  Serial.println("Radio Done");
                          //  analogWrite(ledPin, 20);
                          
                          }
                          //
                          void loop()
                          {
                            gw.process();
                            pulseLED();
                          
                            //
                            // let's constantly check to see if the rain in the past rainWindow hours is greater than rainSensorThreshold
                            //
                          
                            float measure = 0; // Check to see if we need to show sensor tripped in this block
                          
                            for (int i = 0; i < rainWindow; i++)
                            {
                              measure += rainBucket [i];
                          //    Serial.print("measure value (total rainBucket within rainWindow): ");
                          //    Serial.println(measure);
                            }
                            state = (measure >= rainSensorThreshold);
                          
                            if (state != oldState)
                            {
                              gw.send(msgTripped.set(state==1?"1":"0"));
                              delay(250);
                              gw.saveState(STATE_LOCATION, state); //New Code
                          //    Serial.print("State Changed. Tripped State: ");
                          //    Serial.println(state);
                              
                              oldState = state;
                            }
                            //
                            // Now lets reset the rainRate to zero if no tips in the last hour
                            //
                            if (millis() - lastTipTime >= oneHour)// timeout for rain rate
                            {
                              if (rainRate != 0)
                              {
                                rainRate = 0;
                                gw.send(msgRainRate.set(0));
                                delay(250);
                              }
                            }
                          
                          ////////////////////////////
                          ////Comment back in this block to enable Serial prints
                          //  
                          //  if ( (millis() - dataMillis) >= serialInterval)
                          //  {
                          //    for (int i = 24; i <= 120; i = i + 24)
                          //    {
                          //      updateSerialData(i);
                          //    }
                          //    dataMillis = millis();
                          //  }
                          //  
                          ////////////////////////////
                            
                            
                            if (tipBuffer > 0)
                            {
                          //     Serial.println("Sensor Tipped");
                              
                          
                              //******Added calibrateFactor calculations here to account for calibrateFactor being different than 1
                              rainBucket [0] += calibrateFactor;
                          //    Serial.print("rainBucket [0] value: ");
                          //    Serial.println(rainBucket [0]);
                              
                              if (rainBucket [0] * calibrateFactor > 253) rainBucket[0] = 253; // odd occurance but prevent overflow}}
                          
                              float dayTotal = 0;
                              for (int i = 0; i < 24; i++)
                              {
                                dayTotal = dayTotal + rainBucket [i];
                              }
                              
                          //    Serial.print("dayTotal value: ");
                          //    Serial.println(dayTotal);
                              
                              gw.send(msgRain.set(dayTotal,1));
                              delay(250);
                              unsigned long tipDelay = millis() - lastTipTime;
                              if (tipDelay <= oneHour)
                              {
                          
                                rainRate = ((oneHour) / tipDelay) * calibrateFactor; //Is my math/logic correct here??
                            
                                gw.send(msgRainRate.set(rainRate, 1));
                          
                          //      Serial.print("RainRate= ");
                          //      Serial.println(rainRate);
                              }
                          
                              //If this is the first trip in an hour send .1
                              else
                              {
                                gw.send(msgRainRate.set(0.1, 1));
                              }
                              lastTipTime = millis();
                              tipBuffer--;
                            }
                            if (millis() - startMillis >= oneHour)
                            {
                          //    Serial.println("One hour elapsed.");
                              //EEPROM write last value
                              //Converting rainBucket to byte.  Note: limited to one decimal place.
                              //Can this math be simplified?? 
                              float convertRainBucket = rainBucket[0] * 10;
                              if (convertRainBucket  > 253) convertRainBucket = 253; // odd occurance but prevent overflow
                              byte eepromRainBucket = (byte)convertRainBucket;
                              gw.saveState(eepromIndex, eepromRainBucket);
                          
                              eepromIndex++;
                              if (eepromIndex > EEPROM_BUFFER + BUFFER_LENGTH) eepromIndex = EEPROM_BUFFER;
                          //    Serial.print("Writing to EEPROM.  Index: ");
                          //    Serial.println(eepromIndex);
                              gw.saveState(eepromIndex, 0xFF);
                              
                              for (int i = BUFFER_LENGTH - 1; i >= 0; i--)//cascade an hour of values
                              {
                                rainBucket [i + 1] = rainBucket [i];
                              }
                              rainBucket[0] = 0;
                              gw.send(msgRain.set(tipCounter(24),1));// send 24hr tips
                              delay(250);
                              transmitRainData(); // send all of the 5 buckets of data to controller
                              startMillis = millis();
                            }
                          }
                          //
                          void sensorTipped()
                          {
                            static unsigned long last_interrupt_time = 0;
                            unsigned long interrupt_time = millis();
                            if (interrupt_time - last_interrupt_time > 200)
                            {
                              tipBuffer++;
                            }
                            last_interrupt_time = interrupt_time;
                          }
                          //
                          float tipCounter(int hours)
                          {
                            float tipCount = 0;
                            for ( int i = 0; i < hours; i++)
                            {
                              tipCount = tipCount + rainBucket [i];
                            }
                            return tipCount;
                          }
                          //
                          void updateSerialData(int x)
                          {
                            Serial.print(F("Tips last "));
                            Serial.print(x);
                            Serial.print(F(" hours: "));
                            float tipCount = 0;
                            for (int i = 0; i < x; i++)
                            {
                              tipCount = tipCount + rainBucket [i];
                            }
                            Serial.println(tipCount);
                          }
                          void loadRainArray(int value)
                          {
                            for (int i = 0; i < BUFFER_LENGTH - 1; i++)
                            {
                              value--;
                              Serial.print("EEPROM location: ");
                              Serial.println(value);
                              if (value < EEPROM_BUFFER)
                              {
                                value = EEPROM_BUFFER + BUFFER_LENGTH;
                              }
                              float rainValue = gw.loadState(value);
                          
                              if (rainValue < 255)
                              {
                                //Convert back to decimal value
                                float decimalRainValue = rainValue/10;
                                rainBucket[i] = decimalRainValue;
                              }
                              else
                              {
                                rainBucket [i] = 0;
                              }
                          //    Serial.print("rainBucket[ value: ");
                          //    Serial.print(i);
                          //    Serial.print("] value: ");
                          //    Serial.println(rainBucket[i]);
                            }
                          }
                          
                          void transmitRainData(void)
                          {
                            float rainUpdateTotal = 0;
                            for (int i = 0; i < 24; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR1.set(rainUpdateTotal,1));
                            delay(250);
                            for (int i = 24; i < 48; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR2.set(rainUpdateTotal,1));
                            delay(250);
                            for (int i = 48; i < 72; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR3.set(rainUpdateTotal,1));
                          
                            delay(250);
                            for (int i = 72; i < 96; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR4.set(rainUpdateTotal,1));
                          
                            delay(250);
                            for (int i = 96; i < 120; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR5.set(rainUpdateTotal,1));
                            delay(250);
                          }
                          
                          void getVariables(const MyMessage &message)
                          {
                            if (message.sensor == CHILD_ID_RAIN)
                            {
                              // nothing to do here
                            }
                            else if (message.sensor == CHILD_ID_TRIPPED_RAIN)
                            {
                              if (message.type == V_VAR1)
                              {
                                rainWindow = atoi(message.data);
                                if (rainWindow > 120)
                                {
                                  rainWindow = 120;
                                }
                                else if (rainWindow < 6)
                                {
                                  rainWindow = 6;
                                }
                                if (rainWindow != atoi(message.data))   // if I changed the value back inside the boundries, push that number back to Vera
                                {
                                  gw.send(msgTrippedVar1.set(rainWindow));
                                }
                              }
                              else if (message.type == V_VAR2)
                              {
                                rainSensorThreshold = atoi(message.data);
                                if (rainSensorThreshold > 1000)
                                {
                                  rainSensorThreshold = 1000;
                                }
                                else if (rainSensorThreshold < 1)
                                {
                                  rainSensorThreshold = 1;
                                }
                                if (rainSensorThreshold != atoi(message.data))  // if I changed the value back inside the boundries, push that number back to Vera
                                {
                                  gw.send(msgTrippedVar2.set(rainSensorThreshold));
                                }
                              }
                            }
                          }
                          void pulseLED(void)
                          {
                            static boolean ledState = true;
                            static unsigned long pulseStart = millis();
                            if (millis() - pulseStart < 500UL)
                            {
                              digitalWrite(ledPin, !ledState);
                              pulseStart = millis();
                            }
                          }
                          
                          BulldogLowellB Offline
                          BulldogLowellB Offline
                          BulldogLowell
                          Contest Winner
                          wrote on last edited by BulldogLowell
                          #57

                          @petewill said:

                          I have been testing the code for the last couple of days and I think this is working but another set of eyes would be good. I added functionality to set the "calibrateFactor" to a decimal. I also updated the save/load EEPROM to work with the MySensors standard. It seems to be working in my testing but I'm no programmer.

                          Pete,

                          I had a whack of combining your desire to use floats, and my desire not to use floats!

                          Essentially we are storing in hundredths of a mm or hundredths of an inch, and dividing the values down when we transmit to Vera.

                          you set the calibration in hundredths of a unit per tip here:

                          #define CALIBRATE_FACTOR 5 // e.g. 5 is .05mm (or 5 hundredths of an inch if imperial) per tip
                          

                          Take a look at this and let me know if you like it, note it is untested and I still have to test the circular buffer storing ints instead of bytes.

                          /*
                           Arduino Tipping Bucket Rain Gauge
                          
                           April 26, 2015
                          
                           Version 1.02b for MySensors version 1.4.1
                          
                           Arduino Tipping Bucket Rain Gauge
                          
                           Utilizing a tipping bucket sensor, your Vera home automation controller and the MySensors.org
                           gateway you can measure and sense local rain.  This sketch will create two devices on your
                           Vera controller.  One will display your total precipitation for the last 24, 48, 72, 96 and 120
                           hours.  The other, a sensor that changes state if there is recent rain (up to last 120 hours)
                           above a threshold.  Both these settings are user definable.
                          
                           This sketch features the following:
                          
                           * Allows you to set the rain threshold in mm
                           * Allows you to determine the interval window up to 120 hours.
                           * Displays the last 24, 48, 72, 96 and 120 hours total rain in Variable1 through Variable5
                             of the Rain Sensor device
                           * Configuration changes to Sensor device updated every hour
                           * SHould run on any Arduino
                           * Will retain Tripped/Not Tripped status and data in a power outage, saving small ammount
                             of data to EEPROM (Circular Buffer to maximize life of EEPROM)
                           * There is a unique setup requirement necessary in order to properly present the Vera device
                             variables.  The details are outlined in the sketch below.
                           * LED status indicator
                          
                           by @BulldogLowell and @PeteWill for free public use
                          
                           */
                          #include <SPI.h>
                          #include <MySensor.h>
                          #include <math.h>
                          
                          #define NODE_ID 24
                          #define SKETCH_NAME "Rain Gauge"
                          #define SKETCH_VERSION "1.02b"
                          
                          #define DEBUG_ON  // comment out this line to disable serial debug
                          
                          #define CHILD_ID_RAIN 3
                          #define CHILD_ID_TRIPPED_RAIN 4
                          
                          #define STATE_LOCATION 0 // location to save state to EEPROM
                          #define EEPROM_BUFFER 1  // location of the EEPROM circular buffer
                          #define BUFFER_LENGTH 121  // buffer plus the current hour
                          
                          #define CALIBRATE_FACTOR 100 // e.g. 5 is .05mm (or 5 hundredths of an inch if imperial) per tip
                          
                          #ifdef  DEBUG_ON
                          #define DEBUG_PRINT(x)   Serial.print(x)
                          #define DEBUG_PRINTLN(x) Serial.println(x)
                          #define SERIAL_START(x)  Serial.begin(x)
                          #else
                          #define DEBUG_PRINT(x)
                          #define DEBUG_PRINTLN(x)
                          #define SERIAL_START(x)
                          #endif
                          
                          //
                          MySensor gw;
                          //
                          MyMessage msgRainRate(CHILD_ID_RAIN, V_RAINRATE);
                          MyMessage msgRain(CHILD_ID_RAIN, V_RAIN);
                          MyMessage msgRainVAR1(CHILD_ID_RAIN, V_VAR1);
                          MyMessage msgRainVAR2(CHILD_ID_RAIN, V_VAR2);
                          MyMessage msgRainVAR3(CHILD_ID_RAIN, V_VAR3);
                          MyMessage msgRainVAR4(CHILD_ID_RAIN, V_VAR4);
                          MyMessage msgRainVAR5(CHILD_ID_RAIN, V_VAR5);
                          //
                          MyMessage msgTripped(CHILD_ID_TRIPPED_RAIN, V_TRIPPED);
                          MyMessage msgTrippedVar1(CHILD_ID_TRIPPED_RAIN, V_VAR1);
                          MyMessage msgTrippedVar2(CHILD_ID_TRIPPED_RAIN, V_VAR2);
                          //
                          boolean metric = true;
                          //
                          int eepromIndex;
                          int tipSensorPin = 3; // Must be interrupt capable pin
                          int ledPin = 5; // PWM capable pin required
                          unsigned long dataMillis;
                          unsigned long serialInterval = 10000UL;
                          const unsigned long oneHour = 3600000UL;
                          unsigned long lastTipTime;
                          unsigned long lastBucketInterval;
                          unsigned long startMillis;
                          
                          unsigned int rainBucket [120] ; /* 120 hours = 5 days of data */
                          unsigned int rainRate = 0;
                          volatile int tipBuffer = 0;
                          byte rainWindow = 72;         //default rain window in hours
                          int rainSensorThreshold = 50; //default rain sensor sensitivity in hundredths.  Will be overwritten with msgTrippedVar2.
                          byte state = 0;
                          byte oldState = -1;
                          //
                          void setup()
                          {
                            SERIAL_START(115200);
                            gw.begin(getVariables, NODE_ID);
                            pinMode(tipSensorPin, INPUT_PULLUP);
                            attachInterrupt (1, sensorTipped, FALLING);  // depending on location of the hall effect sensor may need CHANGE
                            pinMode(ledPin, OUTPUT);
                            digitalWrite(ledPin, HIGH);
                            gw.sendSketchInfo(SKETCH_NAME, SKETCH_VERSION);
                            gw.present(CHILD_ID_RAIN, S_RAIN);
                            gw.present(CHILD_ID_TRIPPED_RAIN, S_MOTION);
                            DEBUG_PRINTLN(F("Sensor Presentation Complete"));
                            state = gw.loadState(STATE_LOCATION); //retreive prior state from EEPROM
                            DEBUG_PRINT(F("Previous Tripped State (from EEPROM): "));
                            DEBUG_PRINTLN(state ? "Tripped" : "Not Tripped");
                            //
                            gw.send(msgTripped.set(state));
                            delay(250);  // recharge the capacitor
                            //
                            boolean isDataOnEeprom = false;
                            for (int i = 0; i < BUFFER_LENGTH; i++)
                            {
                              byte locator = gw.loadState(EEPROM_BUFFER + 2 * i); //<<<<<<<<<<<
                              if (locator == 0xFF)  // found the EEPROM circular buffer index
                              {
                                eepromIndex = EEPROM_BUFFER + 2 * i;
                                //Now that we have the buffer index let's populate the rainBucket with data from eeprom
                                loadRainArray(eepromIndex);
                                isDataOnEeprom = true;
                                DEBUG_PRINT("EEPROM Index ");
                                DEBUG_PRINTLN(eepromIndex);
                                isDataOnEeprom = true;
                                break;
                              }
                            }
                            if (!isDataOnEeprom) // Added for the first time it is run on a new arduino
                            {
                              eepromIndex = 1;
                              gw.saveState(eepromIndex, 0xFF);
                              gw.saveState(eepromIndex + 1, 0x00);
                            }
                            // reset the timers
                            dataMillis = millis();
                            startMillis = millis();
                            lastTipTime = millis() - oneHour;
                            gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR1); //Get rainWindow from controller (Vera)
                            delay(250);
                            gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR2); //Get rainSensorThreshold from controller (Vera)
                            delay(250);
                            DEBUG_PRINTLN(F("Radio Setup Complete!"));
                          }
                          //
                          void loop()
                          {
                            gw.process();
                            if (state)
                            {
                              prettyFade();  // breath if tripped
                            }
                            else
                            {
                              slowFlash();   // blink if not tripped
                            }
                            //
                            // let's constantly check to see if the rain in the past rainWindow hours is greater than rainSensorThreshold
                            //
                            int measure = 0; // Check to see if we need to show sensor tripped in this block
                            for (int i = 0; i < rainWindow; i++)
                            {
                              measure += rainBucket [i];
                              DEBUG_PRINT(F("measure value (total rainBucket within rainWindow): "));
                              DEBUG_PRINTLN(measure);
                            }
                            //
                            state = (measure >= rainSensorThreshold);
                            if (state != oldState)
                            {
                              gw.send(msgTripped.set(state));
                              delay(250);
                              gw.saveState(STATE_LOCATION, state); //New Code
                              DEBUG_PRINT(F("State Changed. Tripped State: "));
                              DEBUG_PRINTLN(state);
                              oldState = state;
                            }
                            //
                            // Now lets reset the rainRate to zero if no tips in the last hour
                            //
                            if (millis() - lastTipTime >= oneHour)// timeout for rain rate
                            {
                              if (rainRate != 0)
                              {
                                rainRate = 0;
                                gw.send(msgRainRate.set(0));
                                delay(250);
                              }
                            }
                          
                          #ifdef DEBUG_ON
                            if ( (millis() - dataMillis) >= serialInterval)
                            {
                              for (int i = 24; i <= 120; i = i + 24)
                              {
                                updateSerialData(i);
                              }
                              dataMillis = millis();
                            }
                          #endif
                            //
                            if (tipBuffer > 0)
                            {
                              DEBUG_PRINTLN(F("Sensor Tipped"));
                              DEBUG_PRINT(F("rainBucket [0] value: "));
                              DEBUG_PRINTLN(rainBucket [0]);
                              //
                              int dayTotal = 0;
                              for (int i = 0; i < 24; i++)
                              {
                                dayTotal = dayTotal + rainBucket [i];
                              }
                              //
                              DEBUG_PRINT(F("dayTotal value: "));
                              DEBUG_PRINTLN(dayTotal);
                              gw.send(msgRain.set(dayTotal, 1));
                              delay(250);
                              //
                              unsigned long tipDelay = millis() - lastTipTime;
                              if (tipDelay <= oneHour)
                              {
                                rainRate = ((oneHour) / tipDelay);
                                gw.send(msgRainRate.set(rainRate, 1));
                                DEBUG_PRINT(F("RainRate= "));
                                DEBUG_PRINTLN(rainRate);
                              }
                              //
                              //If this is the first trip in an hour send .1
                              //
                              else
                              {
                                gw.send(msgRainRate.set( (float) CALIBRATE_FACTOR / 100.0, 1));//<<<<<<<<<<<<<<calibrate?
                              }
                              lastTipTime = millis();
                              tipBuffer--;
                            }
                            //
                            if (millis() - startMillis >= oneHour)
                            {
                              DEBUG_PRINTLN(F("One hour elapsed."));
                              //EEPROM write last value
                              gw.saveState(eepromIndex, highByte(rainBucket[0]));
                              gw.saveState(eepromIndex + 1, lowByte(rainBucket[0]));
                              eepromIndex++;
                              if (eepromIndex > EEPROM_BUFFER + BUFFER_LENGTH) eepromIndex = EEPROM_BUFFER;
                              DEBUG_PRINT(F("Writing to EEPROM.  Index: "));
                              DEBUG_PRINTLN(eepromIndex);
                              gw.saveState(eepromIndex, 0xFF);
                              gw.saveState(eepromIndex + 1, 0x00);
                              //
                              for (int i = BUFFER_LENGTH - 1; i >= 0; i--)//cascade an hour of values
                              {
                                rainBucket [i + 1] = rainBucket [i];
                              }
                              rainBucket[0] = 0;
                              gw.send(msgRain.set(tipCounter(24), 1)); // send 24hr tips
                              delay(250);
                              transmitRainData(); // send all of the 5 buckets of data to controller
                              delay(250);
                              gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR1);
                              delay(250);
                              gw.request(CHILD_ID_TRIPPED_RAIN, V_VAR2);
                              startMillis = millis();
                            }
                          }
                          //
                          void sensorTipped()
                          {
                            static unsigned long last_interrupt_time = 0;
                            unsigned long interrupt_time = millis();
                            if (interrupt_time - last_interrupt_time > 200)
                            {
                              rainBucket[0] += CALIBRATE_FACTOR; // adds CALIBRATE_FACTOR hundredths of unit each tip
                            }
                            last_interrupt_time = interrupt_time;
                          }
                          //
                          float tipCounter(int hours)
                          {
                            float tipCount = 0;
                            for ( int i = 0; i < hours; i++)
                            {
                              tipCount = tipCount + rainBucket [i];
                            }
                            return tipCount;
                          }
                          //
                          void updateSerialData(int x)
                          {
                            DEBUG_PRINT(F("Tips last "));
                            DEBUG_PRINT(x);
                            DEBUG_PRINTLN(F(" hours: "));
                            int tipCount = 0;
                            for (int i = 0; i < x; i++)
                            {
                              tipCount = tipCount + rainBucket [i];
                            }
                            DEBUG_PRINTLN(tipCount);
                          }
                          void loadRainArray(int value)
                          {
                            for (int i = 0; i < BUFFER_LENGTH - 1; i++)
                            {
                              value--;
                              DEBUG_PRINT("EEPROM location: ");
                              DEBUG_PRINTLN(value);
                              if (value < EEPROM_BUFFER)
                              {
                                value = EEPROM_BUFFER + BUFFER_LENGTH;
                              }
                              byte rainValueHigh = gw.loadState(value);
                              byte rainValueLow = gw.loadState(value + 1);
                              int rainValue = (rainValueHigh << 8) & rainValueLow;
                              rainBucket[i] = rainValue;
                              //
                              DEBUG_PRINT(F("rainBucket[ value: "));
                              DEBUG_PRINT(i);
                              DEBUG_PRINT(F("] value: "));
                              DEBUG_PRINTLN(rainBucket[i]);
                            }
                          }
                          
                          void transmitRainData(void)
                          {
                            int rainUpdateTotal = 0;
                            for (int i = 0; i < 24; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR1.set(( float) rainUpdateTotal / 100.0 , 1));
                            delay(250);
                            for (int i = 24; i < 48; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR2.set( (float) rainUpdateTotal / 100.0 , 1));
                            delay(250);
                            for (int i = 48; i < 72; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR3.set( (float) rainUpdateTotal / 100.0 , 1));
                            delay(250);
                            for (int i = 72; i < 96; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR4.set( (float) rainUpdateTotal / 100.0 , 1));
                            delay(250);
                            for (int i = 96; i < 120; i++)
                            {
                              rainUpdateTotal += rainBucket[i];
                            }
                            gw.send(msgRainVAR5.set( (float) rainUpdateTotal / 100.0 , 1));
                            delay(250);
                          }
                          
                          void getVariables(const MyMessage &message)
                          {
                            if (message.sensor == CHILD_ID_RAIN)
                            {
                              // nothing to do here
                            }
                            else if (message.sensor == CHILD_ID_TRIPPED_RAIN)
                            {
                              if (message.type == V_VAR1)
                              {
                                rainWindow = atoi(message.data);
                                if (rainWindow > 120)
                                {
                                  rainWindow = 120;
                                }
                                else if (rainWindow < 1)
                                {
                                  rainWindow = 1;
                                }
                                if (rainWindow != atoi(message.data))   // if I changed the value back inside the boundries, push that number back to Vera
                                {
                                  gw.send(msgTrippedVar1.set(rainWindow));
                                }
                              }
                              else if (message.type == V_VAR2)
                              {
                                rainSensorThreshold = atoi(message.data);
                                if (rainSensorThreshold > 10000)
                                {
                                  rainSensorThreshold = 10000;
                                }
                                else if (rainSensorThreshold < 1)
                                {
                                  rainSensorThreshold = 1;
                                }
                                if (rainSensorThreshold != atoi(message.data))  // if I changed the value back inside the boundries, push that number back to Vera
                                {
                                  gw.send(msgTrippedVar2.set(rainSensorThreshold));
                                }
                              }
                            }
                          }
                          //
                          void prettyFade(void)
                          {
                            float val = (exp(sin(millis() / 2000.0 * PI)) - 0.36787944) * 108.0;
                            analogWrite(ledPin, val);
                          }
                          
                          void slowFlash(void)
                          {
                            static boolean ledState = true;
                            static unsigned long pulseStart = millis();
                            if (millis() - pulseStart < 100UL)
                            {
                              digitalWrite(ledPin, !ledState);
                              pulseStart = millis();
                            }
                          }
                          

                          EDIT, modified some serial.print()s that needed editing for the debug toggle

                          1 Reply Last reply
                          0
                          • petewillP Offline
                            petewillP Offline
                            petewill
                            Admin
                            wrote on last edited by
                            #58

                            @BulldogLowell
                            Thanks for the comments and sorry for the delayed response. It was a busy weekend and I didn't get much time in front of the computer.

                            I had a whack of combining your desire to use floats, and my desire not to use floats!

                            Haha! I only used floats because I don't know any better. I'm curious, why the dislike of floats?

                            Once you get it done, let's take @hek 's idea and put it into github.

                            Is this something you would like me to do since you made it way better :) I'm happy to do it but I don't want to overstep. I consider this your handy work that I'm just happy to use.

                            Take a look at this and let me know if you like it, note it is untested and I still have to test the circular buffer storing ints instead of bytes.

                            Great! I will take a look some time this week. I mounted my gauge on the house today because we were supposed to get some rain and I wanted to see how it worked in real life. Unfortunately we didn't get any... Hopefully we will get some in the next couple of days before I pull it off to do some more testing.

                            we also need to create image files for the Sensor, but for now, if you want to do the tutorial, I say go for it!

                            I was thinking of going through how I made my gauge by using an existing rain gauge. I'd go over how to do the calculations for the tipping bucket calibration, uploading the files to Vera and how I added the MySensors stuff to the existing gauge. I will definitely mention the 3d printing option as well

                            Thanks for your help!.

                            My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

                            BulldogLowellB 1 Reply Last reply
                            0
                            • petewillP petewill

                              @BulldogLowell
                              Thanks for the comments and sorry for the delayed response. It was a busy weekend and I didn't get much time in front of the computer.

                              I had a whack of combining your desire to use floats, and my desire not to use floats!

                              Haha! I only used floats because I don't know any better. I'm curious, why the dislike of floats?

                              Once you get it done, let's take @hek 's idea and put it into github.

                              Is this something you would like me to do since you made it way better :) I'm happy to do it but I don't want to overstep. I consider this your handy work that I'm just happy to use.

                              Take a look at this and let me know if you like it, note it is untested and I still have to test the circular buffer storing ints instead of bytes.

                              Great! I will take a look some time this week. I mounted my gauge on the house today because we were supposed to get some rain and I wanted to see how it worked in real life. Unfortunately we didn't get any... Hopefully we will get some in the next couple of days before I pull it off to do some more testing.

                              we also need to create image files for the Sensor, but for now, if you want to do the tutorial, I say go for it!

                              I was thinking of going through how I made my gauge by using an existing rain gauge. I'd go over how to do the calculations for the tipping bucket calibration, uploading the files to Vera and how I added the MySensors stuff to the existing gauge. I will definitely mention the 3d printing option as well

                              Thanks for your help!.

                              BulldogLowellB Offline
                              BulldogLowellB Offline
                              BulldogLowell
                              Contest Winner
                              wrote on last edited by
                              #59

                              @petewill said:

                              why the dislike of floats?

                              their four-byte size on arduino make for a huge eeprom storage buffer that we really don't need, we will never have negative rain and we'd never be interested in precision below 0.01 inches or milimeters.

                              @petewill said:

                              I mounted my gauge on the house today

                              terrific, glad to see it make its way into the real world!

                              petewillP 1 Reply Last reply
                              0
                              • BulldogLowellB BulldogLowell

                                @petewill said:

                                why the dislike of floats?

                                their four-byte size on arduino make for a huge eeprom storage buffer that we really don't need, we will never have negative rain and we'd never be interested in precision below 0.01 inches or milimeters.

                                @petewill said:

                                I mounted my gauge on the house today

                                terrific, glad to see it make its way into the real world!

                                petewillP Offline
                                petewillP Offline
                                petewill
                                Admin
                                wrote on last edited by
                                #60

                                @BulldogLowell said:

                                their four-byte size on arduino make for a huge eeprom storage buffer that we really don't need

                                Good to know! I still have a lot to learn about all this stuff. It's definitely fun.

                                terrific, glad to see it make its way into the real world!

                                Yes, me too! I'm happy to report it's working. It rained 6.4mm last night. SO COOL!

                                My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

                                BulldogLowellB 1 Reply Last reply
                                2
                                • petewillP petewill

                                  @BulldogLowell said:

                                  their four-byte size on arduino make for a huge eeprom storage buffer that we really don't need

                                  Good to know! I still have a lot to learn about all this stuff. It's definitely fun.

                                  terrific, glad to see it make its way into the real world!

                                  Yes, me too! I'm happy to report it's working. It rained 6.4mm last night. SO COOL!

                                  BulldogLowellB Offline
                                  BulldogLowellB Offline
                                  BulldogLowell
                                  Contest Winner
                                  wrote on last edited by
                                  #61

                                  @petewill

                                  :thumbsup:

                                  big thumbs up!

                                  1 Reply Last reply
                                  0
                                  • BulldogLowellB Offline
                                    BulldogLowellB Offline
                                    BulldogLowell
                                    Contest Winner
                                    wrote on last edited by
                                    #62

                                    how about adding windspeed to the device?

                                    hekH 1 Reply Last reply
                                    0
                                    • BulldogLowellB BulldogLowell

                                      how about adding windspeed to the device?

                                      hekH Offline
                                      hekH Offline
                                      hek
                                      Admin
                                      wrote on last edited by
                                      #63

                                      @BulldogLowell said:

                                      how about adding windspeed to the device?

                                      Cool device. Haven't seen that one before.

                                      1 Reply Last reply
                                      0
                                      • petewillP Offline
                                        petewillP Offline
                                        petewill
                                        Admin
                                        wrote on last edited by
                                        #64

                                        @BulldogLowell Cool! Do you think it detects wind from all directions? Would this be better than the traditional spinning cup design?

                                        My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

                                        1 Reply Last reply
                                        0
                                        • BulldogLowellB Offline
                                          BulldogLowellB Offline
                                          BulldogLowell
                                          Contest Winner
                                          wrote on last edited by BulldogLowell
                                          #65

                                          @hek
                                          @petewill

                                          A little progress on the device...

                                          Screen Shot 2015-05-09 at 11.07.41 PM.png

                                          Screen Shot 2015-05-09 at 11.17.11 PM.png

                                          Screen Shot 2015-05-09 at 11.07.28 PM.png

                                          Screen Shot 2015-05-09 at 11.11.29 PM.png

                                          BulldogLowellB 1 Reply Last reply
                                          1
                                          Reply
                                          • Reply as topic
                                          Log in to reply
                                          • Oldest to Newest
                                          • Newest to Oldest
                                          • Most Votes


                                          14

                                          Online

                                          11.7k

                                          Users

                                          11.2k

                                          Topics

                                          113.1k

                                          Posts


                                          Copyright 2025 TBD   |   Forum Guidelines   |   Privacy Policy   |   Terms of Service
                                          • Login

                                          • Don't have an account? Register

                                          • Login or register to search.
                                          • First post
                                            Last post
                                          0
                                          • MySensors
                                          • OpenHardware.io
                                          • Categories
                                          • Recent
                                          • Tags
                                          • Popular