💬 Power Meter Pulse Sensor
-
Nothing more.
I use the same arduino, haven't uploaded anything new to it since i tried it last time.What I had to do was lower the sensitivity on the LM393 because at first the signal-LED glowed a bit but when i adjusted it to lower sensitivity and closed the door to get it totaly dark the led blinked exactly as the meeter.
I have it on a bredboard and connected the cap between GND and to pin 3 so it is connected close to the arduino but i guess it shouldn't matter.
Have you tried it?
-
It waswhat I thought too.
As I said earlier, when I tested this my conclusion was, short blink, almost a flash will counted as a pulse (kWh) but it does something wrong with the calculation of instant power usage.
A slower blink will correct this.
My meeter gives a very short blink. -
I tried to build something similar and it is working nicely, thanks for sharing the idea! However, I've noticed the light sensor (alone) consumes 1mA constantly which is quite a lot when used for a battery powered project. Even if I report to the controller once per hour (summing up the power consumption along the way), still the light sensor needs to be always on, meaning I'd probably need to replace batteries after a month or so. Is there any workaround or alternative sensor which I can use or am I doing something completely wrong? Thanks
-
I tried to build something similar and it is working nicely, thanks for sharing the idea! However, I've noticed the light sensor (alone) consumes 1mA constantly which is quite a lot when used for a battery powered project. Even if I report to the controller once per hour (summing up the power consumption along the way), still the light sensor needs to be always on, meaning I'd probably need to replace batteries after a month or so. Is there any workaround or alternative sensor which I can use or am I doing something completely wrong? Thanks
@user2684 I had the same issue when I built this with a standalone atmega328p running on 2x AA's. I set it up with wake on interrupt from the It was constantly drawing 1.6mA to power the tsl257 to detect the flashes. My target was 1+ years on 2 x AA's. My solution to achieve this was to sleep for 125ms, wake up, send power to tsl257 to check light state (on/off), if it changed from previous reading then there was a pulse (well half pulse). By measuring every 125ms I can guarantee to capture fast pulses up to 14.4kW. (3600000/125)/2. It is 20kW max draw for residential in my country. Now:
Average mA Consumption Sleep 0.1
Average mA Consumption Wake 0.064516129
Average mA Consumption Transmit 0.002916667
Battery Life (2xAAs) = 1.7 years -
@user2684 I had the same issue when I built this with a standalone atmega328p running on 2x AA's. I set it up with wake on interrupt from the It was constantly drawing 1.6mA to power the tsl257 to detect the flashes. My target was 1+ years on 2 x AA's. My solution to achieve this was to sleep for 125ms, wake up, send power to tsl257 to check light state (on/off), if it changed from previous reading then there was a pulse (well half pulse). By measuring every 125ms I can guarantee to capture fast pulses up to 14.4kW. (3600000/125)/2. It is 20kW max draw for residential in my country. Now:
Average mA Consumption Sleep 0.1
Average mA Consumption Wake 0.064516129
Average mA Consumption Transmit 0.002916667
Battery Life (2xAAs) = 1.7 years@cstewy many thanks and very interesting. You basically saying it consumes less by waking up every 125ms rather than being asleep but with the sensor eating up current continuously. Definitely worth trying thanks! Meanwhile I've reduced the number of radio transmission and the batteries lasted for a couple of months but still is not ideal. Thanks! I'll try and report back
-
Hello, i'm stuck with this sensor, because no Interrupt is really working. I've cut down the code to this:
/** * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2015 Sensnology AB * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * REVISION HISTORY * Version 1.0 - Henrik Ekblad * * DESCRIPTION * This sketch provides an example how to implement a LM393 PCB * Use this sensor to measure kWh and Watt of your house meter * You need to set the correct pulsefactor of your meter (blinks per kWh). * The sensor starts by fetching current kWh value from gateway. * Reports both kWh and Watt back to gateway. * * Unfortunately millis() won't increment when the Arduino is in * sleepmode. So we cannot make this sensor sleep if we also want * to calculate/report watt value. * http://www.mysensors.org/build/pulse_power */ // Enable debug prints #define MY_DEBUG // Enable and select radio type attached //#define MY_RADIO_NRF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 //#include <MySensors.h> #define DIGITAL_INPUT_SENSOR 2 // The digital input you attached your light sensor. (Only 2 and 3 generates interrupt!) #define PULSE_FACTOR 500 // Number of blinks per of your meter #define SLEEP_MODE false // Watt value can only be reported when sleep mode is false. #define MAX_WATT 1000000 // Max watt value to report. This filters outliers. #define CHILD_ID 10 // Id of the sensor child uint32_t SEND_FREQUENCY = 15000; // Minimum time between send (in milliseconds). We don't want to spam the gateway. double ppwh = ((double)PULSE_FACTOR)/1000; // Pulses per watt hour bool pcReceived = true; volatile uint32_t pulseCount = 0; volatile uint32_t lastBlink = 0; volatile uint32_t watt = 0; uint32_t oldPulseCount = 0; uint32_t oldWatt = 0; double oldkWh; uint32_t lastSend; //MyMessage wattMsg(CHILD_ID,V_WATT); //MyMessage kWhMsg(CHILD_ID,V_KWH); //MyMessage pcMsg(CHILD_ID,V_VAR1); void setup() { Serial.begin(9600); Serial.println("Start setup"); // Fetch last known pulse count value from gw //request(CHILD_ID, V_VAR1); // Use the internal pullup to be able to hook up this sketch directly to an energy meter with S0 output // If no pullup is used, the reported usage will be too high because of the floating pin pinMode(DIGITAL_INPUT_SENSOR,INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(DIGITAL_INPUT_SENSOR), onPulse, RISING); lastSend=millis(); Serial.println("Start setup: last sent: "); pinMode(LED_BUILTIN, OUTPUT); digitalWrite(LED_BUILTIN, LOW); } void presentation() { // Send the sketch version information to the gateway and Controller //sendSketchInfo("Energy Meter", "1.3"); // Register this device as power sensor //present(CHILD_ID, S_POWER); } void loop() { } void onPulse() { Serial.println("onPulse:"); digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW delay(1000); pulseCount++; Serial.println("pulseCount:"); }The Problem ist, that only on Start the interrupt ist working once, but no LED blinks.
Can someone help?
Thanks.
-
Hello, i'm stuck with this sensor, because no Interrupt is really working. I've cut down the code to this:
/** * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2015 Sensnology AB * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * REVISION HISTORY * Version 1.0 - Henrik Ekblad * * DESCRIPTION * This sketch provides an example how to implement a LM393 PCB * Use this sensor to measure kWh and Watt of your house meter * You need to set the correct pulsefactor of your meter (blinks per kWh). * The sensor starts by fetching current kWh value from gateway. * Reports both kWh and Watt back to gateway. * * Unfortunately millis() won't increment when the Arduino is in * sleepmode. So we cannot make this sensor sleep if we also want * to calculate/report watt value. * http://www.mysensors.org/build/pulse_power */ // Enable debug prints #define MY_DEBUG // Enable and select radio type attached //#define MY_RADIO_NRF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 //#include <MySensors.h> #define DIGITAL_INPUT_SENSOR 2 // The digital input you attached your light sensor. (Only 2 and 3 generates interrupt!) #define PULSE_FACTOR 500 // Number of blinks per of your meter #define SLEEP_MODE false // Watt value can only be reported when sleep mode is false. #define MAX_WATT 1000000 // Max watt value to report. This filters outliers. #define CHILD_ID 10 // Id of the sensor child uint32_t SEND_FREQUENCY = 15000; // Minimum time between send (in milliseconds). We don't want to spam the gateway. double ppwh = ((double)PULSE_FACTOR)/1000; // Pulses per watt hour bool pcReceived = true; volatile uint32_t pulseCount = 0; volatile uint32_t lastBlink = 0; volatile uint32_t watt = 0; uint32_t oldPulseCount = 0; uint32_t oldWatt = 0; double oldkWh; uint32_t lastSend; //MyMessage wattMsg(CHILD_ID,V_WATT); //MyMessage kWhMsg(CHILD_ID,V_KWH); //MyMessage pcMsg(CHILD_ID,V_VAR1); void setup() { Serial.begin(9600); Serial.println("Start setup"); // Fetch last known pulse count value from gw //request(CHILD_ID, V_VAR1); // Use the internal pullup to be able to hook up this sketch directly to an energy meter with S0 output // If no pullup is used, the reported usage will be too high because of the floating pin pinMode(DIGITAL_INPUT_SENSOR,INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(DIGITAL_INPUT_SENSOR), onPulse, RISING); lastSend=millis(); Serial.println("Start setup: last sent: "); pinMode(LED_BUILTIN, OUTPUT); digitalWrite(LED_BUILTIN, LOW); } void presentation() { // Send the sketch version information to the gateway and Controller //sendSketchInfo("Energy Meter", "1.3"); // Register this device as power sensor //present(CHILD_ID, S_POWER); } void loop() { } void onPulse() { Serial.println("onPulse:"); digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW delay(1000); pulseCount++; Serial.println("pulseCount:"); }The Problem ist, that only on Start the interrupt ist working once, but no LED blinks.
Can someone help?
Thanks.
@artipi using Serial.print and delay from within an interrupt service routine will mess things up. Interrupt service routines must be executed quickly.
From https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/:
Since delay() requires interrupts to work, it will not work if called inside an ISR.
You need to do the blinking inside loop().
-
Hey guys
So i am trying to use this sketch with the sleep mode set to true 'cause i need to run it on battery.
It works fine running with usb power on it and sleep mode on false.
But with sleep mode true i am getting nothing in myscontroller after the initial startup.
All i changed is the sleep mode from false to true.
Running it on a clone nano with some chinese "flame detector" sensor.
Been trying to figure out if it has something to do with how it reports when in sleep mode but it should still report whatever the send frequency is set to right?
I was using a tv remote to fake impulses, with seems to work on usb power, but not on battery.
Any suggestions?Best regards
Patrik -
Hey guys
So i am trying to use this sketch with the sleep mode set to true 'cause i need to run it on battery.
It works fine running with usb power on it and sleep mode on false.
But with sleep mode true i am getting nothing in myscontroller after the initial startup.
All i changed is the sleep mode from false to true.
Running it on a clone nano with some chinese "flame detector" sensor.
Been trying to figure out if it has something to do with how it reports when in sleep mode but it should still report whatever the send frequency is set to right?
I was using a tv remote to fake impulses, with seems to work on usb power, but not on battery.
Any suggestions?Best regards
Patrik@patrikr76 just to make sure we are on the same page, could you clarify which sketch you are using? This thread has discussed lots of sketches and it would be a pity if we’re looking at different code :)
In any case, the debug log from the node will give the best information on what is happening.
It could also be useful to only change one thing. Right now you change sleep mode and switch to battery, right? How does the node behave with sleep mode on, but still running on usb power? How does the node behave with sleep mode off, but running on battery?
-
@mfalkvidd , you are absolutely right. Let me clarify.
I am using the example code that is under build and power meter pulse sensor, updated may 1st, 2018.
Running it with "sleep mode = false" it works fine with both usb and battery power, just drains the battery quite fast.
Setting it to "sleep mode = true" it doesn't work either on usb or battery power.Here's how the serial monitor looks for the startup phase with sleep mode as true.
23:21:24.219 -> __ __ ____ 23:21:24.219 -> | \/ |_ _/ ___| ___ _ __ ___ ___ _ __ ___ 23:21:24.219 -> | |\/| | | | \___ \ / _ \ `_ \/ __|/ _ \| `__/ __| 23:21:24.219 -> | | | | |_| |___| | __/ | | \__ \ _ | | \__ \ 23:21:24.219 -> |_| |_|\__, |____/ \___|_| |_|___/\___/|_| |___/ 23:21:24.219 -> |___/ 2.3.0 23:21:24.219 -> 23:21:24.219 -> 16 MCO:BGN:INIT NODE,CP=RNNNA---,VER=2.3.0 23:21:24.254 -> 25 TSM:INIT 23:21:24.254 -> 26 TSF:WUR:MS=0 23:21:24.254 -> 33 TSM:INIT:TSP OK 23:21:24.254 -> 35 TSF:SID:OK,ID=2 23:21:24.254 -> 37 TSM:FPAR 73 TSF:MSG:SEND,2-2-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK: 201 TSF:MSG:READ,0-0-2,s=255,c=3,t=8,pt=1,l=1,sg=0:0 23:21:24.428 -> 205 TSF:MSG:FPAR OK,ID=0,D=1 2080 TSM:FPAR:OK 23:21:26.306 -> 2081 TSM:ID 23:21:26.306 -> 2082 TSM:ID:OK 23:21:26.306 -> 2084 TSM:UPL 23:21:26.306 -> 2087 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=24,pt=1,l=1,sg=0,ft=0,st=OK:1 23:21:26.306 -> 2095 TSF:MSG:READ,0-0-2,s=255,c=3,t=25,pt=1,l=1,sg=0:1 23:21:26.306 -> 2100 TSF:MSG:PONG RECV,HP=1 23:21:26.306 -> 2103 TSM:UPL:OK 23:21:26.306 -> 2104 TSM:READY:ID=2,PAR=0,DIS=1 23:21:26.306 -> 2109 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=15,pt=6,l=2,sg=0,ft=0,st=OK:0100 23:21:26.341 -> 2118 TSF:MSG:READ,0-0-2,s=255,c=3,t=15,pt=6,l=2,sg=0:0100 23:21:26.341 -> 2125 TSF:MSG:SEND,2-2-0-0,s=255,c=0,t=17,pt=0,l=5,sg=0,ft=0,st=OK:2.3.0 23:21:26.341 -> 2134 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=6,pt=1,l=1,sg=0,ft=0,st=OK:0 2203 TSF:MSG:READ,0-0-2,s=255,c=3,t=6,pt=0,l=1,sg=0:M 23:21:26.410 -> 2210 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=11,pt=0,l=12,sg=0,ft=0,st=OK:Energy Meter 23:21:26.445 -> 2220 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=12,pt=0,l=3,sg=0,ft=0,st=OK:1.0 23:21:26.445 -> 2228 TSF:MSG:SEND,2-2-0-0,s=1,c=0,t=13,pt=0,l=0,sg=0,ft=0,st=OK: 23:21:26.445 -> 2234 MCO:REG:REQ 23:21:26.445 -> 2237 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=26,pt=1,l=1,sg=0,ft=0,st=OK:2 2252 TSF:MSG:READ,0-0-2,s=255,c=3,t=27,pt=1,l=1,sg=0:1 23:21:26.480 -> 2257 MCO:PIM:NODE REG=1 23:21:26.480 -> 2259 MCO:BGN:STP 23:21:26.480 -> 2263 TSF:MSG:SEND,2-2-0-0,s=1,c=2,t=24,pt=0,l=0,sg=0,ft=0,st=OK: 23:21:26.480 -> 2269 MCO:BGN:INIT OK,TSP=1 23:21:26.480 -> 2272 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:21:26.480 -> 2277 TSF:TDI:TSLAs far as i can see it seems fine and also shows up in myscontroller.
And here is an example how it looks after 20 seconds sleep.
2414 MCO:SLP:WUP=-1 23:26:36.346 -> 2416 TSF:TRI:TSB 23:26:36.346 -> 2418 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:26:36.346 -> 2423 TSF:TDI:TSLI don't see any connection attempts with my gateway, or shouldn't there by any if the sensor is not triggered?
Here i can show how it looks when tricking the sensor with the ir on the mouse.
2456 MCO:SLP:WUP=-1 23:27:48.785 -> 2458 TSF:TRI:TSB 23:27:48.785 -> 2460 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:48.785 -> 2465 TSF:TDI:TSL 2467 MCO:SLP:WUP=-1 23:27:48.924 -> 2468 TSF:TRI:TSB 23:27:48.959 -> 2470 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:48.959 -> 2476 TSF:TDI:TSL 2478 MCO:SLP:WUP=-1 23:27:49.098 -> 2480 TSF:TRI:TSB 23:27:49.098 -> 2481 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:49.098 -> 2486 TSF:TDI:TSL 2488 MCO:SLP:WUP=-1 23:27:49.235 -> 2490 TSF:TRI:TSB 23:27:49.235 -> 2492 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:49.270 -> 2497 TSF:TDI:TSL 2498 MCO:SLP:WUP=-1 23:27:49.408 -> 2500 TSF:TRI:TSB 23:27:49.408 -> 2502 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:49.408 -> 2507 TSF:TDI:TSL 2509 MCO:SLP:WUP=-1 23:27:49.546 -> 2510 TSF:TRI:TSB 23:27:49.546 -> 2512 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:49.546 -> 2518 TSF:TDI:TSLInterrupt is triggered and it wakes up, but nothing is sent to the gateway.
Have i missed something?
-
@mfalkvidd , you are absolutely right. Let me clarify.
I am using the example code that is under build and power meter pulse sensor, updated may 1st, 2018.
Running it with "sleep mode = false" it works fine with both usb and battery power, just drains the battery quite fast.
Setting it to "sleep mode = true" it doesn't work either on usb or battery power.Here's how the serial monitor looks for the startup phase with sleep mode as true.
23:21:24.219 -> __ __ ____ 23:21:24.219 -> | \/ |_ _/ ___| ___ _ __ ___ ___ _ __ ___ 23:21:24.219 -> | |\/| | | | \___ \ / _ \ `_ \/ __|/ _ \| `__/ __| 23:21:24.219 -> | | | | |_| |___| | __/ | | \__ \ _ | | \__ \ 23:21:24.219 -> |_| |_|\__, |____/ \___|_| |_|___/\___/|_| |___/ 23:21:24.219 -> |___/ 2.3.0 23:21:24.219 -> 23:21:24.219 -> 16 MCO:BGN:INIT NODE,CP=RNNNA---,VER=2.3.0 23:21:24.254 -> 25 TSM:INIT 23:21:24.254 -> 26 TSF:WUR:MS=0 23:21:24.254 -> 33 TSM:INIT:TSP OK 23:21:24.254 -> 35 TSF:SID:OK,ID=2 23:21:24.254 -> 37 TSM:FPAR 73 TSF:MSG:SEND,2-2-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK: 201 TSF:MSG:READ,0-0-2,s=255,c=3,t=8,pt=1,l=1,sg=0:0 23:21:24.428 -> 205 TSF:MSG:FPAR OK,ID=0,D=1 2080 TSM:FPAR:OK 23:21:26.306 -> 2081 TSM:ID 23:21:26.306 -> 2082 TSM:ID:OK 23:21:26.306 -> 2084 TSM:UPL 23:21:26.306 -> 2087 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=24,pt=1,l=1,sg=0,ft=0,st=OK:1 23:21:26.306 -> 2095 TSF:MSG:READ,0-0-2,s=255,c=3,t=25,pt=1,l=1,sg=0:1 23:21:26.306 -> 2100 TSF:MSG:PONG RECV,HP=1 23:21:26.306 -> 2103 TSM:UPL:OK 23:21:26.306 -> 2104 TSM:READY:ID=2,PAR=0,DIS=1 23:21:26.306 -> 2109 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=15,pt=6,l=2,sg=0,ft=0,st=OK:0100 23:21:26.341 -> 2118 TSF:MSG:READ,0-0-2,s=255,c=3,t=15,pt=6,l=2,sg=0:0100 23:21:26.341 -> 2125 TSF:MSG:SEND,2-2-0-0,s=255,c=0,t=17,pt=0,l=5,sg=0,ft=0,st=OK:2.3.0 23:21:26.341 -> 2134 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=6,pt=1,l=1,sg=0,ft=0,st=OK:0 2203 TSF:MSG:READ,0-0-2,s=255,c=3,t=6,pt=0,l=1,sg=0:M 23:21:26.410 -> 2210 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=11,pt=0,l=12,sg=0,ft=0,st=OK:Energy Meter 23:21:26.445 -> 2220 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=12,pt=0,l=3,sg=0,ft=0,st=OK:1.0 23:21:26.445 -> 2228 TSF:MSG:SEND,2-2-0-0,s=1,c=0,t=13,pt=0,l=0,sg=0,ft=0,st=OK: 23:21:26.445 -> 2234 MCO:REG:REQ 23:21:26.445 -> 2237 TSF:MSG:SEND,2-2-0-0,s=255,c=3,t=26,pt=1,l=1,sg=0,ft=0,st=OK:2 2252 TSF:MSG:READ,0-0-2,s=255,c=3,t=27,pt=1,l=1,sg=0:1 23:21:26.480 -> 2257 MCO:PIM:NODE REG=1 23:21:26.480 -> 2259 MCO:BGN:STP 23:21:26.480 -> 2263 TSF:MSG:SEND,2-2-0-0,s=1,c=2,t=24,pt=0,l=0,sg=0,ft=0,st=OK: 23:21:26.480 -> 2269 MCO:BGN:INIT OK,TSP=1 23:21:26.480 -> 2272 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:21:26.480 -> 2277 TSF:TDI:TSLAs far as i can see it seems fine and also shows up in myscontroller.
And here is an example how it looks after 20 seconds sleep.
2414 MCO:SLP:WUP=-1 23:26:36.346 -> 2416 TSF:TRI:TSB 23:26:36.346 -> 2418 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:26:36.346 -> 2423 TSF:TDI:TSLI don't see any connection attempts with my gateway, or shouldn't there by any if the sensor is not triggered?
Here i can show how it looks when tricking the sensor with the ir on the mouse.
2456 MCO:SLP:WUP=-1 23:27:48.785 -> 2458 TSF:TRI:TSB 23:27:48.785 -> 2460 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:48.785 -> 2465 TSF:TDI:TSL 2467 MCO:SLP:WUP=-1 23:27:48.924 -> 2468 TSF:TRI:TSB 23:27:48.959 -> 2470 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:48.959 -> 2476 TSF:TDI:TSL 2478 MCO:SLP:WUP=-1 23:27:49.098 -> 2480 TSF:TRI:TSB 23:27:49.098 -> 2481 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:49.098 -> 2486 TSF:TDI:TSL 2488 MCO:SLP:WUP=-1 23:27:49.235 -> 2490 TSF:TRI:TSB 23:27:49.235 -> 2492 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:49.270 -> 2497 TSF:TDI:TSL 2498 MCO:SLP:WUP=-1 23:27:49.408 -> 2500 TSF:TRI:TSB 23:27:49.408 -> 2502 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:49.408 -> 2507 TSF:TDI:TSL 2509 MCO:SLP:WUP=-1 23:27:49.546 -> 2510 TSF:TRI:TSB 23:27:49.546 -> 2512 MCO:SLP:MS=20000,SMS=0,I1=255,M1=255,I2=255,M2=255 23:27:49.546 -> 2518 TSF:TDI:TSLInterrupt is triggered and it wakes up, but nothing is sent to the gateway.
Have i missed something?
@patrikr76 great info, thanks!
The -1 in Wup=-1 indicates that the node was waken up by timer and not by interrupt. That’s very strange, since the time stamps clearly show that 20 seconds has not passed.
Could you add
Serial.println(pulseCount);after
sleep(SEND_FREQUENCY);to see if pulseCount is increased?