@yveaux Thank you for the replay. I read that post when I was testing the board but I don't know much about radio protocols and I get a little confused trying to extrapolate the information in that post to MySensors. The boards I have are version v1.2 (printed in the PCB). What I understood from the post (I could be totally wrong), is that if I want to implement LoRaWan protocol with that board I would need to solder DIO1 and DIO2 to some IO pins (preferably pin5 and pin6 using wire instead of the 1 and 2 that would be the easy ones with the soldering pads). But I believe for radio use with MySensors (no LoRaWan) I don't have to solder DIO1 or DIO2... (Is this assumption right?) as I got the boards talking to each other with the RadioHead library and the pin definitions I posted the sketch. RadioHead TX test sketch: // Feather9x_TX // -*- mode: C++ -*- // Example sketch showing how to create a simple messaging client (transmitter) // with the RH_RF95 class. RH_RF95 class does not provide for addressing or // reliability, so you should only use RH_RF95 if you do not need the higher // level messaging abilities. // It is designed to work with the other example Feather9x_RX #include <SPI.h> #include <RH_RF95.h> // for feather32u4 #define RFM95_CS 8 #define RFM95_RST 4 #define RFM95_INT 7 /* for feather m0 #define RFM95_CS 8 #define RFM95_RST 4 #define RFM95_INT 3 */ /* for shield #define RFM95_CS 10 #define RFM95_RST 9 #define RFM95_INT 7 */ /* Feather 32u4 w/wing #define RFM95_RST 11 // "A" #define RFM95_CS 10 // "B" #define RFM95_INT 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!) */ /* Feather m0 w/wing #define RFM95_RST 11 // "A" #define RFM95_CS 10 // "B" #define RFM95_INT 6 // "D" */ #if defined(ESP8266) /* for ESP w/featherwing */ #define RFM95_CS 2 // "E" #define RFM95_RST 16 // "D" #define RFM95_INT 15 // "B" #elif defined(ESP32) /* ESP32 feather w/wing */ #define RFM95_RST 27 // "A" #define RFM95_CS 33 // "B" #define RFM95_INT 12 // next to A #elif defined(NRF52) /* nRF52832 feather w/wing */ #define RFM95_RST 7 // "A" #define RFM95_CS 11 // "B" #define RFM95_INT 31 // "C" #elif defined(TEENSYDUINO) /* Teensy 3.x w/wing */ #define RFM95_RST 9 // "A" #define RFM95_CS 10 // "B" #define RFM95_INT 4 // "C" #endif // Change to 434.0 or other frequency, must match RX's freq! #define RF95_FREQ 868.0 // Singleton instance of the radio driver RH_RF95 rf95(RFM95_CS, RFM95_INT); void setup() { pinMode(RFM95_RST, OUTPUT); digitalWrite(RFM95_RST, HIGH); Serial.begin(115200); while (!Serial) { delay(1); } delay(100); Serial.println("Feather LoRa TX Test!"); // manual reset digitalWrite(RFM95_RST, LOW); delay(10); digitalWrite(RFM95_RST, HIGH); delay(10); while (!rf95.init()) { Serial.println("LoRa radio init failed"); Serial.println("Uncomment '#define SERIAL_DEBUG' in RH_RF95.cpp for detailed debug info"); while (1); } Serial.println("LoRa radio init OK!"); // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM if (!rf95.setFrequency(RF95_FREQ)) { Serial.println("setFrequency failed"); while (1); } Serial.print("Set Freq to: "); Serial.println(RF95_FREQ); // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on // The default transmitter power is 13dBm, using PA_BOOST. // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then // you can set transmitter powers from 5 to 23 dBm: rf95.setTxPower(23, false); } int16_t packetnum = 0; // packet counter, we increment per xmission void loop() { delay(1000); // Wait 1 second between transmits, could also 'sleep' here! Serial.println("Transmitting..."); // Send a message to rf95_server char radiopacket[20] = "Hello World # "; itoa(packetnum++, radiopacket+13, 10); Serial.print("Sending "); Serial.println(radiopacket); radiopacket[19] = 0; Serial.println("Sending..."); delay(10); rf95.send((uint8_t *)radiopacket, 20); Serial.println("Waiting for packet to complete..."); delay(10); rf95.waitPacketSent(); // Now wait for a reply uint8_t buf[RH_RF95_MAX_MESSAGE_LEN]; uint8_t len = sizeof(buf); Serial.println("Waiting for reply..."); if (rf95.waitAvailableTimeout(1000)) { // Should be a reply message for us now if (rf95.recv(buf, &len)) { Serial.print("Got reply: "); Serial.println((char*)buf); Serial.print("RSSI: "); Serial.println(rf95.lastRssi(), DEC); } else { Serial.println("Receive failed"); } } else { Serial.println("No reply, is there a listener around?"); } } RadioHead RX Test Sketch: // Feather9x_RX // -*- mode: C++ -*- // Example sketch showing how to create a simple messaging client (receiver) // with the RH_RF95 class. RH_RF95 class does not provide for addressing or // reliability, so you should only use RH_RF95 if you do not need the higher // level messaging abilities. // It is designed to work with the other example Feather9x_TX #include <SPI.h> #include <RH_RF95.h> // for Feather32u4 RFM9x #define RFM95_CS 8 #define RFM95_RST 4 #define RFM95_INT 7 /* for feather m0 RFM9x #define RFM95_CS 8 #define RFM95_RST 4 #define RFM95_INT 3 */ /* for shield #define RFM95_CS 10 #define RFM95_RST 9 #define RFM95_INT 7 */ /* Feather 32u4 w/wing #define RFM95_RST 11 // "A" #define RFM95_CS 10 // "B" #define RFM95_INT 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!) */ /* Feather m0 w/wing #define RFM95_RST 11 // "A" #define RFM95_CS 10 // "B" #define RFM95_INT 6 // "D" */ #if defined(ESP8266) /* for ESP w/featherwing */ #define RFM95_CS 2 // "E" #define RFM95_RST 16 // "D" #define RFM95_INT 15 // "B" #elif defined(ESP32) /* ESP32 feather w/wing */ #define RFM95_RST 27 // "A" #define RFM95_CS 33 // "B" #define RFM95_INT 12 // next to A #elif defined(NRF52) /* nRF52832 feather w/wing */ #define RFM95_RST 7 // "A" #define RFM95_CS 11 // "B" #define RFM95_INT 31 // "C" #elif defined(TEENSYDUINO) /* Teensy 3.x w/wing */ #define RFM95_RST 9 // "A" #define RFM95_CS 10 // "B" #define RFM95_INT 4 // "C" #endif // Change to 434.0 or other frequency, must match RX's freq! #define RF95_FREQ 868.0 // Singleton instance of the radio driver RH_RF95 rf95(RFM95_CS, RFM95_INT); // Blinky on receipt #define LED 13 void setup() { pinMode(LED, OUTPUT); pinMode(RFM95_RST, OUTPUT); digitalWrite(RFM95_RST, HIGH); Serial.begin(115200); while (!Serial) { delay(1); } delay(100); Serial.println("Feather LoRa RX Test!"); // manual reset digitalWrite(RFM95_RST, LOW); delay(10); digitalWrite(RFM95_RST, HIGH); delay(10); while (!rf95.init()) { Serial.println("LoRa radio init failed"); Serial.println("Uncomment '#define SERIAL_DEBUG' in RH_RF95.cpp for detailed debug info"); while (1); } Serial.println("LoRa radio init OK!"); // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM if (!rf95.setFrequency(RF95_FREQ)) { Serial.println("setFrequency failed"); while (1); } Serial.print("Set Freq to: "); Serial.println(RF95_FREQ); // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on // The default transmitter power is 13dBm, using PA_BOOST. // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then // you can set transmitter powers from 5 to 23 dBm: rf95.setTxPower(23, false); } void loop() { if (rf95.available()) { // Should be a message for us now uint8_t buf[RH_RF95_MAX_MESSAGE_LEN]; uint8_t len = sizeof(buf); if (rf95.recv(buf, &len)) { digitalWrite(LED, HIGH); RH_RF95::printBuffer("Received: ", buf, len); Serial.print("Got: "); Serial.println((char*)buf); Serial.print("RSSI: "); Serial.println(rf95.lastRssi(), DEC); // Send a reply uint8_t data[] = "And hello back to you"; rf95.send(data, sizeof(data)); rf95.waitPacketSent(); Serial.println("Sent a reply"); digitalWrite(LED, LOW); } else { Serial.println("Receive failed"); } } } The receiver node got the message with this library and without soldering DIO1 and DIO2. Thanks again for the support!