Hi,
My name is Mike and I'm the person running the Kickstarter campaign mentioned on this topic (https://www.kickstarter.com/projects/340271897/whisper-node). Glad to see people are looking into my project as an alternative for low-power applications. Anyway, I'll try to give my 2 cents about the battery powered nodes and the regulators.
@Michael-Moebius The MCP1640 is a great chip, but you're correct saying that it's complicated to built the module itself. The problem of assembling it on a breadboard or protoboard, is that you will probably end-up having very long leads/traces, this will cause lots of inductance, preventing the switching regulator to work well. There's also the interference the circuit can cause to others and to itself as those regulators run at high-frequency.
I've a look on the Pololu product you mentioned and it seems to be ok for a step-up regulator to produce, let's say, 3.3v from a single or dual AA, but the efficiency chart there show a bit of problem at lower currents when using a single AA. That might cause some unexpected battery consumption when the board is sleeping... but only a real-life test would give the answer.
@jmd Could you pls provide some additional details about your project:
- Which board/MCU are you using?
- Have you already discovered the power consumption of your circuit when its active and when sleeping?
*Collect the active current can be trick as it might be a very sort spike, in this case you can rely on datasheets OR change your code into a loop to, lets say, keep reading a sensor continually just for you to measure the current.
- Do you really need 5V?
Sorry to ask so many questions, but when designing things to run for long periods every single mA counts! Also, stay away from 5V if possible, use 3.3V or even lower voltage is possible, that will save lots of battery.
If you really need 5V to power-up a special sensor (which there's no substitute which could run at 3.3V), the best approach is to have 2 power rails: a 3.3V rail powering the board and MCU and a 5V rail to power the special components. This second rail you'll need to keep off and turn on using the MCU only when necessary using a Mosfet, Power Switch or a Regulator Enable Pin.
Another thing related to 5V is that you probably won't be able to get if from a single AA, you'll need at least 2 cells to produce some usable current from a step-up. Remember that the battery voltage will drop during its life, so make sure you always calculate things using the lowest voltage (expect 0.9V by the end of the battery life http://data.energizer.com/PDFs/E91.pdf)
If you decide go to the LDO solution, bear in mind you'll always need to supply greater voltage, so the regulator will "burn" the extra power and deliver the selected voltage. For example, if you need 5V you probably will need to have 5 Alkaline cells so you can use the batteries down to 1.1V each (the extra 0.1V is for the LDO drop-down itself). People normally do the mistake of using 4 AA thinking they'll have 6V, but that's only true for the first 25% of the battery life
As a rule of thumb, if your project will spend most of the time sleeping you need to chose a regulator that is more efficient at lower currents. Always check the datasheets for "quiescent current" as well the current X drop-out charts. That will give you an idea about the minimum consumption when nothing is running.
I've posted some details how I tested the power consumption of the Whisper Node board on this forum: https://www.element14.com/community/thread/49699/l/new-ultra-low-power-arduino-board-with-built-in-rf-rfm69, you should be able to adapt some of that for your project.
Regarding price... switching regulators are not the cheapest part of a circuit. Depending of your needs it can easily be more expensive than the MCU itself
@Pavel-Hrudka Great options, although I couldn't find much information on the MAX856 and LT1300CS8 datasheets when running under 1.5V... The MAX seems to be better for lower currents, while the Linear has a good output power. Anyway, both manufacturers usually produce very good quality components.
For the Aliexpress option, there's no silicon model, but byt the look of the module design I would say it'll not have the best performance... I can see a diode which can add some undesired voltage drop as well a huge (22uH) non-shielded inductor, which doesn't look ideal to for efficiency. At the end you get what you paid for...
Cheers,
Mike M.