[security] Introducing signing support to MySensors
-
@meddie You can just run an unmodified personalizer to have it read the EEPROM contents. That way you can verify that all devices share the exact same AES key. Assuming a mismatch in the AES key was the reason for the problem.
But I strongly encourage you to just enable one security feature at a time if you are not sure what you are doing or it will be hard to debug what is going wrong.@Anticimex
yes, i try to activate one feature and when it works the next. So i decided to activate the encryption and then when it works then i try to activate the signing. But first i would to check the keys like you said and when i now upload the securitypersonalization sketch unmodified i dont get any output on the serial monitor.
:disappointed: -
@Anticimex
yes, i try to activate one feature and when it works the next. So i decided to activate the encryption and then when it works then i try to activate the signing. But first i would to check the keys like you said and when i now upload the securitypersonalization sketch unmodified i dont get any output on the serial monitor.
:disappointed: -
@meddie Well, you have to make the patch to the baud rate and the changes we discussed earlier. I presume you did something necessary since you got output previously.
@Anticimex
when i run the personalizer sketch i see in all keys FFFFFF....... What does it mean that no keys are stored? -
@Anticimex
when i run the personalizer sketch i see in all keys FFFFFF....... What does it mean that no keys are stored? -
@meddie yes, that mean eeprom is in default state. The node has not been properly personalized.
@Anticimex
ok, i think i know what went wrong! But i dont know how to fix it. On the first run when i tried came the prompt to sens space to lock configuration i did it.
Now when i upload the modified personalization sketch with my keys i get this output on serial monitor:
of course i removed my keys with xx!Device serial: {0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX} xxxxxxxxxxxxxxxxxxxxx Skipping configuration write and lock (configuration already locked). Chip configuration: EEPROM DATA: SOFT_HMAC_KEY | FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF SOFT_SERIAL | FFFFFFFFFFFFFFFFFF AES_KEY | XXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ATSHA204A DATA: SN[0:1] | SN[2:3] | XX XX | XX XX Revnum | 00 09 04 00 SN[4:7] | XX XX XX XX SN[8] | Reserved13 | I2CEnable | Reserved15 | EE | 10 | 00 | 00 I2CAddress | TempOffset | OTPmode | SelectorMode | C8 | 00 | 55 | 00 SlotConfig00 | SlotConfig01 | 8F 80 | 80 A1 SlotConfig02 | SlotConfig03 | 82 E0 | A3 60 SlotConfig04 | SlotConfig05 | 94 40 | A0 85 SlotConfig06 | SlotConfig07 | 86 40 | 87 07 SlotConfig08 | SlotConfig09 | 0F 00 | 89 F2 SlotConfig0A | SlotConfig0B | 8A 7A | 0B 8B SlotConfig0C | SlotConfig0D | 0C 4C | DD 4D SlotConfig0E | SlotConfig0F | C2 42 | AF 8F UseFlag00 | UpdateCount00 | UseFlag01 | UpdateCount01 | FF | 00 | FF | 00 UseFlag02 | UpdateCount02 | UseFlag03 | UpdateCount03 | FF | 00 | FF | 00 UseFlag04 | UpdateCount04 | UseFlag05 | UpdateCount05 | FF | 00 | FF | 00 UseFlag06 | UpdateCount06 | UseFlag07 | UpdateCount07 | FF | 00 | FF | 00 LastKeyUse[0:3] | FF FF FF FF LastKeyUse[4:7] | FF FF FF FF LastKeyUse[8:B] | FF FF FF FF LastKeyUse[C:F] | FF FF FF FF UserExtra | Selector | LockValue | LockConfig | 00 | 00 | 55 | 00 Using this user supplied HMAC key: #define MY_HMAC_KEY 0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,\ 0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx Writing key to slot 0... Data not locked. Define LOCK_DATA to lock for real. -------------------------------- Personalization is now complete. Configuration is LOCKED Data is UNLOCKEDi thin this is the reason:
Skipping configuration write and lock (configuration already locked).and what i find very interestin that the first two signs of AES Key are correct the rest of them are FFFFF
AES_KEY | XXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFis it possible to unlock the configuration or did i kill the chip?
Thank you
Greets Eddie -
@Anticimex
ok, i think i know what went wrong! But i dont know how to fix it. On the first run when i tried came the prompt to sens space to lock configuration i did it.
Now when i upload the modified personalization sketch with my keys i get this output on serial monitor:
of course i removed my keys with xx!Device serial: {0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX} xxxxxxxxxxxxxxxxxxxxx Skipping configuration write and lock (configuration already locked). Chip configuration: EEPROM DATA: SOFT_HMAC_KEY | FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF SOFT_SERIAL | FFFFFFFFFFFFFFFFFF AES_KEY | XXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ATSHA204A DATA: SN[0:1] | SN[2:3] | XX XX | XX XX Revnum | 00 09 04 00 SN[4:7] | XX XX XX XX SN[8] | Reserved13 | I2CEnable | Reserved15 | EE | 10 | 00 | 00 I2CAddress | TempOffset | OTPmode | SelectorMode | C8 | 00 | 55 | 00 SlotConfig00 | SlotConfig01 | 8F 80 | 80 A1 SlotConfig02 | SlotConfig03 | 82 E0 | A3 60 SlotConfig04 | SlotConfig05 | 94 40 | A0 85 SlotConfig06 | SlotConfig07 | 86 40 | 87 07 SlotConfig08 | SlotConfig09 | 0F 00 | 89 F2 SlotConfig0A | SlotConfig0B | 8A 7A | 0B 8B SlotConfig0C | SlotConfig0D | 0C 4C | DD 4D SlotConfig0E | SlotConfig0F | C2 42 | AF 8F UseFlag00 | UpdateCount00 | UseFlag01 | UpdateCount01 | FF | 00 | FF | 00 UseFlag02 | UpdateCount02 | UseFlag03 | UpdateCount03 | FF | 00 | FF | 00 UseFlag04 | UpdateCount04 | UseFlag05 | UpdateCount05 | FF | 00 | FF | 00 UseFlag06 | UpdateCount06 | UseFlag07 | UpdateCount07 | FF | 00 | FF | 00 LastKeyUse[0:3] | FF FF FF FF LastKeyUse[4:7] | FF FF FF FF LastKeyUse[8:B] | FF FF FF FF LastKeyUse[C:F] | FF FF FF FF UserExtra | Selector | LockValue | LockConfig | 00 | 00 | 55 | 00 Using this user supplied HMAC key: #define MY_HMAC_KEY 0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,\ 0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx,0xxx Writing key to slot 0... Data not locked. Define LOCK_DATA to lock for real. -------------------------------- Personalization is now complete. Configuration is LOCKED Data is UNLOCKEDi thin this is the reason:
Skipping configuration write and lock (configuration already locked).and what i find very interestin that the first two signs of AES Key are correct the rest of them are FFFFF
AES_KEY | XXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFis it possible to unlock the configuration or did i kill the chip?
Thank you
Greets Eddie@meddie you cannot undo a lock, and you have to lock the chip in order to use it. And it is not an error that it reports chip is already locked since you have locked it already.
Furthermore, AES key and eeprom has nothing to do with the atsha204a chip so the lock state of the chip is irrelevant.
Now, why your AES key is only partially stored, I am not sure. But my bet would be that you have an error in the line where you define it in the sketch. A space or something like that.
Finally, as long as you don't lock the data zone, and you don't tamper with the configuration bits for the atsha204a device, you cannot destroy the chip. You can always replace the hmac key, which is the only thing you program to the atsha using the personalizer. Except for the chip configuration bits, and those the sketch handles for you and once config is locked they are fixed in place. -
@meddie you cannot undo a lock, and you have to lock the chip in order to use it. And it is not an error that it reports chip is already locked since you have locked it already.
Furthermore, AES key and eeprom has nothing to do with the atsha204a chip so the lock state of the chip is irrelevant.
Now, why your AES key is only partially stored, I am not sure. But my bet would be that you have an error in the line where you define it in the sketch. A space or something like that.
Finally, as long as you don't lock the data zone, and you don't tamper with the configuration bits for the atsha204a device, you cannot destroy the chip. You can always replace the hmac key, which is the only thing you program to the atsha using the personalizer. Except for the chip configuration bits, and those the sketch handles for you and once config is locked they are fixed in place.@Anticimex
i checked the sketch already few times but i dont see an error.
here is the code i have only change my key with XX#include "sha204_library.h" #include "sha204_lib_return_codes.h" #define MY_CORE_ONLY #include <MySensors.h> #if DOXYGEN #define LOCK_CONFIGURATION #define LOCK_DATA #define SKIP_KEY_STORAGE #define USER_KEY #define SKIP_UART_CONFIRMATION #define USE_SOFT_SIGNING #define STORE_SOFT_KEY #define USER_SOFT_KEY #define STORE_SOFT_SERIAL #define USER_SOFT_SERIAL #define STORE_AES_KEY #define USER_AES_KEY #endif #define LOCK_CONFIGURATION //#define LOCK_DATA //#define SKIP_KEY_STORAGE #define USER_KEY //#define SKIP_UART_CONFIRMATION //#define USE_SOFT_SIGNING //#define STORE_SOFT_KEY //#define USER_SOFT_KEY //#define STORE_SOFT_SERIAL //#define USER_SOFT_SERIAL #define STORE_AES_KEY #define USER_AES_KEY #if defined(SKIP_UART_CONFIRMATION) && !defined(USER_KEY) #error You have to define USER_KEY for boards that does not have UART #endif #ifdef USER_KEY /** @brief The user-defined HMAC key to use for personalization */ #define MY_HMAC_KEY 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX /** @brief The data to store in key slot 0 */ const uint8_t user_key_data[32] = {MY_HMAC_KEY}; #endif #ifdef USER_SOFT_KEY /** @brief The user-defined soft HMAC key to use for EEPROM personalization */ #define MY_SOFT_HMAC_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as soft HMAC key in EEPROM */ const uint8_t user_soft_key_data[32] = {MY_SOFT_HMAC_KEY}; #endif #ifdef USER_SOFT_SERIAL /** @brief The user-defined soft serial to use for EEPROM personalization */ #define MY_SOFT_SERIAL 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as soft serial in EEPROM */ const uint8_t user_soft_serial[9] = {MY_SOFT_SERIAL}; #endif #ifdef USER_AES_KEY /** @brief The user-defined AES key to use for EEPROM personalization */ #define MY_AES_KEY 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX /** @brief The data to store as AES key in EEPROM */ const uint8_t user_aes_key[16] = {MY_AES_KEY}; #endif #ifndef USE_SOFT_SIGNING const int sha204Pin = MY_SIGNING_ATSHA204_PIN; //!< The IO pin to use for ATSHA204A atsha204Class sha204(sha204Pin); #endif /** @brief Print a error notice and halt the execution */ void halt() { Serial.println(F("Halting!")); while(1); } #ifndef USE_SOFT_SIGNING uint16_t write_config_and_get_crc() { uint16_t crc = 0; uint8_t config_word[4]; uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; bool do_write; for (int i=0; i < 88; i += 4) { do_write = true; if (i == 20) { config_word[0] = 0x8F; config_word[1] = 0x80; config_word[2] = 0x80; config_word[3] = 0xA1; } else if (i == 24) { config_word[0] = 0x82; config_word[1] = 0xE0; config_word[2] = 0xA3; config_word[3] = 0x60; } else if (i == 28) { config_word[0] = 0x94; config_word[1] = 0x40; config_word[2] = 0xA0; config_word[3] = 0x85; } else if (i == 32) { config_word[0] = 0x86; config_word[1] = 0x40; config_word[2] = 0x87; config_word[3] = 0x07; } else if (i == 36) { config_word[0] = 0x0F; config_word[1] = 0x00; config_word[2] = 0x89; config_word[3] = 0xF2; } else if (i == 40) { config_word[0] = 0x8A; config_word[1] = 0x7A; config_word[2] = 0x0B; config_word[3] = 0x8B; } else if (i == 44) { config_word[0] = 0x0C; config_word[1] = 0x4C; config_word[2] = 0xDD; config_word[3] = 0x4D; } else if (i == 48) { config_word[0] = 0xC2; config_word[1] = 0x42; config_word[2] = 0xAF; config_word[3] = 0x8F; } else if (i == 52 || i == 56 || i == 60 || i == 64) { config_word[0] = 0xFF; config_word[1] = 0x00; config_word[2] = 0xFF; config_word[3] = 0x00; } else if (i == 68 || i == 72 || i == 76 || i == 80) { config_word[0] = 0xFF; config_word[1] = 0xFF; config_word[2] = 0xFF; config_word[3] = 0xFF; } else { // All other configs are untouched ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } // Set config_word to the read data config_word[0] = rx_buffer[SHA204_BUFFER_POS_DATA+0]; config_word[1] = rx_buffer[SHA204_BUFFER_POS_DATA+1]; config_word[2] = rx_buffer[SHA204_BUFFER_POS_DATA+2]; config_word[3] = rx_buffer[SHA204_BUFFER_POS_DATA+3]; do_write = false; } // Update crc with CRC for the current word crc = sha204.calculateAndUpdateCrc(4, config_word, crc); // Write config word if (do_write) { ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_CONFIG, i >> 2, 4, config_word, 0, NULL, 0, NULL, WRITE_COUNT_SHORT, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write config word at address ")); Serial.print(i); Serial.print(F(". Response: ")); Serial.println(ret_code, HEX); halt(); } } } return crc; } /** * @brief Write provided key to slot 0 * @param key The key data to write */ void write_key(uint8_t* key) { uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; // Write key to slot 0 ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_DATA | SHA204_ZONE_COUNT_FLAG, 0, SHA204_ZONE_ACCESS_32, key, 0, NULL, 0, NULL, WRITE_COUNT_LONG, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write key to slot 0. Response: ")); Serial.println(ret_code, HEX); halt(); } } #endif // not USE_SOFT_SIGNING /** @brief Dump current configuration to UART */ void dump_configuration() { uint8_t buffer[32]; #ifndef USE_SOFT_SIGNING Serial.println(F("EEPROM DATA:")); #endif hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); Serial.print(F("SOFT_HMAC_KEY | ")); for (int j=0; j<32; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); Serial.print(F("SOFT_SERIAL | ")); for (int j=0; j<9; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, 16); Serial.print(F("AES_KEY | ")); for (int j=0; j<16; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; Serial.println(F("ATSHA204A DATA:")); for (int i=0; i < 88; i += 4) { ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } if (i == 0x00) { Serial.print(F(" SN[0:1] | SN[2:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x04) { Serial.print(F(" Revnum | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x08) { Serial.print(F(" SN[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x0C) { Serial.print(F(" SN[8] | Reserved13 | I2CEnable | Reserved15 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x10) { Serial.print(F(" I2CAddress | TempOffset | OTPmode | SelectorMode | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x14) { Serial.print(F(" SlotConfig00 | SlotConfig01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x18) { Serial.print(F(" SlotConfig02 | SlotConfig03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x1C) { Serial.print(F(" SlotConfig04 | SlotConfig05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x20) { Serial.print(F(" SlotConfig06 | SlotConfig07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x24) { Serial.print(F(" SlotConfig08 | SlotConfig09 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x28) { Serial.print(F(" SlotConfig0A | SlotConfig0B | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x2C) { Serial.print(F(" SlotConfig0C | SlotConfig0D | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x30) { Serial.print(F(" SlotConfig0E | SlotConfig0F | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x34) { Serial.print(F(" UseFlag00 | UpdateCount00 | UseFlag01 | UpdateCount01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x38) { Serial.print(F(" UseFlag02 | UpdateCount02 | UseFlag03 | UpdateCount03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x3C) { Serial.print(F(" UseFlag04 | UpdateCount04 | UseFlag05 | UpdateCount05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x40) { Serial.print(F(" UseFlag06 | UpdateCount06 | UseFlag07 | UpdateCount07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x44) { Serial.print(F(" LastKeyUse[0:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x48) { Serial.print(F(" LastKeyUse[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x4C) { Serial.print(F(" LastKeyUse[8:B] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x50) { Serial.print(F(" LastKeyUse[C:F] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x54) { Serial.print(F(" UserExtra | Selector | LockValue | LockConfig | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } } #endif // not USE_SOFT_SIGNING } /** @brief Sketch setup code */ void setup() { // Delay startup a bit for serial consoles to catch up unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)500); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; uint8_t lockConfig = 0; uint8_t lockValue = 0; uint16_t crc; (void)crc; #else // initialize pseudo-RNG randomSeed(analogRead(MY_SIGNING_SOFT_RANDOMSEED_PIN)); #endif uint8_t key[32]; (void)key; Serial.begin(9600); hwInit(); Serial.println(F("Personalization sketch for MySensors usage.")); Serial.println(F("-------------------------------------------")); #ifndef USE_SOFT_SIGNING // Wake device before starting operations ret_code = sha204.sha204c_wakeup(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to wake device. Response: ")); Serial.println(ret_code, HEX); halt(); } // Read out lock config bits to determine if locking is possible ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } #endif #ifdef STORE_SOFT_KEY #ifdef USER_SOFT_KEY memcpy(key, user_soft_key_data, 32); Serial.println(F("Using this user supplied soft HMAC key:")); #else // Retrieve random value to use as soft HMAC key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 32; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_KEY Serial.print("#define MY_SOFT_HMAC_KEY "); for (int i=0; i<32; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 31) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); #endif // STORE_SOFT_KEY #ifdef STORE_SOFT_SERIAL #ifdef USER_SOFT_SERIAL memcpy(key, user_soft_serial, 9); Serial.println(F("Using this user supplied soft serial:")); #else // Retrieve random value to use as serial #ifdef USE_SOFT_SIGNING for (int i = 0; i < 9; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft serial:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random serial generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 9); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft serial:")); } else { Serial.println(F("Serial is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_SERIAL Serial.print("#define MY_SOFT_SERIAL "); for (int i=0; i<9; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 8) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); #endif // STORE_SOFT_SERIAL #ifdef STORE_AES_KEY #ifdef USER_AES_KEY memcpy(key, user_aes_key, 16); Serial.println(F("Using this user supplied AES key:")); #else // Retrieve random value to use as key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 16; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This key will be stored in EEPROM as AES key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This key will be stored in EEPROM as AES key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_AES_KEY Serial.print("#define MY_AES_KEY "); for (int i=0; i<16; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 15) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, 16); #endif // STORE_AES_KEY #ifdef USE_SOFT_SIGNING Serial.println(F("EEPROM configuration:")); dump_configuration(); #else // Output device revision on console ret_code = sha204.sha204m_dev_rev(tx_buffer, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device revision. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.print(F("Device revision: ")); for (int i=0; i<4; i++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+i], HEX); } Serial.println(); } // Output serial number on console ret_code = sha204.getSerialNumber(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to obtain device serial number. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.print(F("Device serial: ")); Serial.print('{'); for (int i=0; i<9; i++) { Serial.print(F("0x")); if (rx_buffer[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[i], HEX); if (i < 8) { Serial.print(','); } } Serial.print('}'); Serial.println(); for (int i=0; i<9; i++) { if (rx_buffer[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[i], HEX); } Serial.println(); } if (lockConfig != 0x00) { // Write config and get CRC for the updated config crc = write_config_and_get_crc(); // List current configuration before attempting to lock Serial.println(F("Chip configuration:")); dump_configuration(); #ifdef LOCK_CONFIGURATION // Purge serial input buffer #ifndef SKIP_UART_CONFIRMATION while (Serial.available()) { Serial.read(); } Serial.println(F("Send SPACE character now to lock the configuration...")); while (Serial.available() == 0); if (Serial.read() == ' ') #endif //not SKIP_UART_CONFIRMATION { Serial.println(F("Locking configuration...")); // Correct sequence, resync chip ret_code = sha204.sha204c_resync(SHA204_RSP_SIZE_MAX, rx_buffer); if (ret_code != SHA204_SUCCESS && ret_code != SHA204_RESYNC_WITH_WAKEUP) { Serial.print(F("Resync failed. Response: ")); Serial.println(ret_code, HEX); halt(); } // Lock configuration zone ret_code = sha204.sha204m_execute(SHA204_LOCK, SHA204_ZONE_CONFIG, crc, 0, NULL, 0, NULL, 0, NULL, LOCK_COUNT, tx_buffer, LOCK_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Configuration lock failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.println(F("Configuration locked.")); // Update lock flags after locking ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } } } #ifndef SKIP_UART_CONFIRMATION else { Serial.println(F("Unexpected answer. Skipping lock.")); } #endif //not SKIP_UART_CONFIRMATION #else //LOCK_CONFIGURATION Serial.println(F("Configuration not locked. Define LOCK_CONFIGURATION to lock for real.")); #endif } else { Serial.println(F("Skipping configuration write and lock (configuration already locked).")); Serial.println(F("Chip configuration:")); dump_configuration(); } #ifdef SKIP_KEY_STORAGE Serial.println(F("Disable SKIP_KEY_STORAGE to store key.")); #else #ifdef USER_KEY memcpy(key, user_key_data, 32); Serial.println(F("Using this user supplied HMAC key:")); #else // Retrieve random value to use as key ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("Take note of this key, it will never be the shown again:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif Serial.print("#define MY_HMAC_KEY "); for (int i=0; i<32; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 31) { Serial.print(','); } if (i+1 == 16) { Serial.print("\\\n "); } } Serial.println(); // It will not be possible to write the key if the configuration zone is unlocked if (lockConfig == 0x00) { // Write the key to the appropriate slot in the data zone Serial.println(F("Writing key to slot 0...")); write_key(key); } else { Serial.println(F("Skipping key storage (configuration not locked).")); Serial.println(F("The configuration must be locked to be able to write a key.")); } #endif if (lockValue != 0x00) { #ifdef LOCK_DATA #ifndef SKIP_UART_CONFIRMATION while (Serial.available()) { Serial.read(); } Serial.println(F("Send SPACE character to lock data...")); while (Serial.available() == 0); if (Serial.read() == ' ') #endif //not SKIP_UART_CONFIRMATION { // Correct sequence, resync chip ret_code = sha204.sha204c_resync(SHA204_RSP_SIZE_MAX, rx_buffer); if (ret_code != SHA204_SUCCESS && ret_code != SHA204_RESYNC_WITH_WAKEUP) { Serial.print(F("Resync failed. Response: ")); Serial.println(ret_code, HEX); halt(); } // If configuration is unlocked, key is not updated. Locking data in this case will cause // slot 0 to contain an unknown (or factory default) key, and this is in practically any // usecase not the desired behaviour, so ask for additional confirmation in this case. if (lockConfig != 0x00) { while (Serial.available()) { Serial.read(); } Serial.println(F("*** ATTENTION ***")); Serial.println(F("Configuration is not locked. Are you ABSULOUTELY SURE you want to lock data?")); Serial.println(F("Locking data at this stage will cause slot 0 to contain a factory default key")); Serial.println( F("which cannot be change after locking is done. This is in practically any usecase")); Serial.println(F("NOT the desired behavour. Send SPACE character now to lock data anyway...")); while (Serial.available() == 0); if (Serial.read() != ' ') { Serial.println(F("Unexpected answer. Skipping lock.")); halt(); } } // Lock data zone ret_code = sha204.sha204m_execute(SHA204_LOCK, SHA204_ZONE_DATA | LOCK_ZONE_NO_CRC, 0x0000, 0, NULL, 0, NULL, 0, NULL, LOCK_COUNT, tx_buffer, LOCK_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Data lock failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.println(F("Data locked.")); // Update lock flags after locking ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } } } #ifndef SKIP_UART_CONFIRMATION else { Serial.println(F("Unexpected answer. Skipping lock.")); } #endif //not SKIP_UART_CONFIRMATION #else //LOCK_DATA Serial.println(F("Data not locked. Define LOCK_DATA to lock for real.")); #endif } else { Serial.println(F("Skipping OTP/data zone lock (zone already locked).")); } #endif // not USE_SOFT_SIGNING Serial.println(F("--------------------------------")); Serial.println(F("Personalization is now complete.")); #ifndef USE_SOFT_SIGNING Serial.print(F("Configuration is ")); if (lockConfig == 0x00) { Serial.println("LOCKED"); } else { Serial.println("UNLOCKED"); } Serial.print(F("Data is ")); if (lockValue == 0x00) { Serial.println("LOCKED"); } else { Serial.println("UNLOCKED"); } #endif } /** @brief Sketch execution code */ void loop() { }``` -
@meddie you cannot undo a lock, and you have to lock the chip in order to use it. And it is not an error that it reports chip is already locked since you have locked it already.
Furthermore, AES key and eeprom has nothing to do with the atsha204a chip so the lock state of the chip is irrelevant.
Now, why your AES key is only partially stored, I am not sure. But my bet would be that you have an error in the line where you define it in the sketch. A space or something like that.
Finally, as long as you don't lock the data zone, and you don't tamper with the configuration bits for the atsha204a device, you cannot destroy the chip. You can always replace the hmac key, which is the only thing you program to the atsha using the personalizer. Except for the chip configuration bits, and those the sketch handles for you and once config is locked they are fixed in place.@Anticimex
the interesting thing is when i upload the same sketch to the sensebender micro it works the AES Key will be stored correctly.
But on the Sensebender Gateway only the first two digits -
@Anticimex
i checked the sketch already few times but i dont see an error.
here is the code i have only change my key with XX#include "sha204_library.h" #include "sha204_lib_return_codes.h" #define MY_CORE_ONLY #include <MySensors.h> #if DOXYGEN #define LOCK_CONFIGURATION #define LOCK_DATA #define SKIP_KEY_STORAGE #define USER_KEY #define SKIP_UART_CONFIRMATION #define USE_SOFT_SIGNING #define STORE_SOFT_KEY #define USER_SOFT_KEY #define STORE_SOFT_SERIAL #define USER_SOFT_SERIAL #define STORE_AES_KEY #define USER_AES_KEY #endif #define LOCK_CONFIGURATION //#define LOCK_DATA //#define SKIP_KEY_STORAGE #define USER_KEY //#define SKIP_UART_CONFIRMATION //#define USE_SOFT_SIGNING //#define STORE_SOFT_KEY //#define USER_SOFT_KEY //#define STORE_SOFT_SERIAL //#define USER_SOFT_SERIAL #define STORE_AES_KEY #define USER_AES_KEY #if defined(SKIP_UART_CONFIRMATION) && !defined(USER_KEY) #error You have to define USER_KEY for boards that does not have UART #endif #ifdef USER_KEY /** @brief The user-defined HMAC key to use for personalization */ #define MY_HMAC_KEY 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX /** @brief The data to store in key slot 0 */ const uint8_t user_key_data[32] = {MY_HMAC_KEY}; #endif #ifdef USER_SOFT_KEY /** @brief The user-defined soft HMAC key to use for EEPROM personalization */ #define MY_SOFT_HMAC_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as soft HMAC key in EEPROM */ const uint8_t user_soft_key_data[32] = {MY_SOFT_HMAC_KEY}; #endif #ifdef USER_SOFT_SERIAL /** @brief The user-defined soft serial to use for EEPROM personalization */ #define MY_SOFT_SERIAL 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as soft serial in EEPROM */ const uint8_t user_soft_serial[9] = {MY_SOFT_SERIAL}; #endif #ifdef USER_AES_KEY /** @brief The user-defined AES key to use for EEPROM personalization */ #define MY_AES_KEY 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX /** @brief The data to store as AES key in EEPROM */ const uint8_t user_aes_key[16] = {MY_AES_KEY}; #endif #ifndef USE_SOFT_SIGNING const int sha204Pin = MY_SIGNING_ATSHA204_PIN; //!< The IO pin to use for ATSHA204A atsha204Class sha204(sha204Pin); #endif /** @brief Print a error notice and halt the execution */ void halt() { Serial.println(F("Halting!")); while(1); } #ifndef USE_SOFT_SIGNING uint16_t write_config_and_get_crc() { uint16_t crc = 0; uint8_t config_word[4]; uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; bool do_write; for (int i=0; i < 88; i += 4) { do_write = true; if (i == 20) { config_word[0] = 0x8F; config_word[1] = 0x80; config_word[2] = 0x80; config_word[3] = 0xA1; } else if (i == 24) { config_word[0] = 0x82; config_word[1] = 0xE0; config_word[2] = 0xA3; config_word[3] = 0x60; } else if (i == 28) { config_word[0] = 0x94; config_word[1] = 0x40; config_word[2] = 0xA0; config_word[3] = 0x85; } else if (i == 32) { config_word[0] = 0x86; config_word[1] = 0x40; config_word[2] = 0x87; config_word[3] = 0x07; } else if (i == 36) { config_word[0] = 0x0F; config_word[1] = 0x00; config_word[2] = 0x89; config_word[3] = 0xF2; } else if (i == 40) { config_word[0] = 0x8A; config_word[1] = 0x7A; config_word[2] = 0x0B; config_word[3] = 0x8B; } else if (i == 44) { config_word[0] = 0x0C; config_word[1] = 0x4C; config_word[2] = 0xDD; config_word[3] = 0x4D; } else if (i == 48) { config_word[0] = 0xC2; config_word[1] = 0x42; config_word[2] = 0xAF; config_word[3] = 0x8F; } else if (i == 52 || i == 56 || i == 60 || i == 64) { config_word[0] = 0xFF; config_word[1] = 0x00; config_word[2] = 0xFF; config_word[3] = 0x00; } else if (i == 68 || i == 72 || i == 76 || i == 80) { config_word[0] = 0xFF; config_word[1] = 0xFF; config_word[2] = 0xFF; config_word[3] = 0xFF; } else { // All other configs are untouched ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } // Set config_word to the read data config_word[0] = rx_buffer[SHA204_BUFFER_POS_DATA+0]; config_word[1] = rx_buffer[SHA204_BUFFER_POS_DATA+1]; config_word[2] = rx_buffer[SHA204_BUFFER_POS_DATA+2]; config_word[3] = rx_buffer[SHA204_BUFFER_POS_DATA+3]; do_write = false; } // Update crc with CRC for the current word crc = sha204.calculateAndUpdateCrc(4, config_word, crc); // Write config word if (do_write) { ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_CONFIG, i >> 2, 4, config_word, 0, NULL, 0, NULL, WRITE_COUNT_SHORT, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write config word at address ")); Serial.print(i); Serial.print(F(". Response: ")); Serial.println(ret_code, HEX); halt(); } } } return crc; } /** * @brief Write provided key to slot 0 * @param key The key data to write */ void write_key(uint8_t* key) { uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; // Write key to slot 0 ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_DATA | SHA204_ZONE_COUNT_FLAG, 0, SHA204_ZONE_ACCESS_32, key, 0, NULL, 0, NULL, WRITE_COUNT_LONG, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write key to slot 0. Response: ")); Serial.println(ret_code, HEX); halt(); } } #endif // not USE_SOFT_SIGNING /** @brief Dump current configuration to UART */ void dump_configuration() { uint8_t buffer[32]; #ifndef USE_SOFT_SIGNING Serial.println(F("EEPROM DATA:")); #endif hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); Serial.print(F("SOFT_HMAC_KEY | ")); for (int j=0; j<32; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); Serial.print(F("SOFT_SERIAL | ")); for (int j=0; j<9; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, 16); Serial.print(F("AES_KEY | ")); for (int j=0; j<16; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; Serial.println(F("ATSHA204A DATA:")); for (int i=0; i < 88; i += 4) { ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } if (i == 0x00) { Serial.print(F(" SN[0:1] | SN[2:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x04) { Serial.print(F(" Revnum | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x08) { Serial.print(F(" SN[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x0C) { Serial.print(F(" SN[8] | Reserved13 | I2CEnable | Reserved15 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x10) { Serial.print(F(" I2CAddress | TempOffset | OTPmode | SelectorMode | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x14) { Serial.print(F(" SlotConfig00 | SlotConfig01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x18) { Serial.print(F(" SlotConfig02 | SlotConfig03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x1C) { Serial.print(F(" SlotConfig04 | SlotConfig05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x20) { Serial.print(F(" SlotConfig06 | SlotConfig07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x24) { Serial.print(F(" SlotConfig08 | SlotConfig09 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x28) { Serial.print(F(" SlotConfig0A | SlotConfig0B | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x2C) { Serial.print(F(" SlotConfig0C | SlotConfig0D | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x30) { Serial.print(F(" SlotConfig0E | SlotConfig0F | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x34) { Serial.print(F(" UseFlag00 | UpdateCount00 | UseFlag01 | UpdateCount01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x38) { Serial.print(F(" UseFlag02 | UpdateCount02 | UseFlag03 | UpdateCount03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x3C) { Serial.print(F(" UseFlag04 | UpdateCount04 | UseFlag05 | UpdateCount05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x40) { Serial.print(F(" UseFlag06 | UpdateCount06 | UseFlag07 | UpdateCount07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x44) { Serial.print(F(" LastKeyUse[0:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x48) { Serial.print(F(" LastKeyUse[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x4C) { Serial.print(F(" LastKeyUse[8:B] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x50) { Serial.print(F(" LastKeyUse[C:F] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x54) { Serial.print(F(" UserExtra | Selector | LockValue | LockConfig | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } } #endif // not USE_SOFT_SIGNING } /** @brief Sketch setup code */ void setup() { // Delay startup a bit for serial consoles to catch up unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)500); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; uint8_t lockConfig = 0; uint8_t lockValue = 0; uint16_t crc; (void)crc; #else // initialize pseudo-RNG randomSeed(analogRead(MY_SIGNING_SOFT_RANDOMSEED_PIN)); #endif uint8_t key[32]; (void)key; Serial.begin(9600); hwInit(); Serial.println(F("Personalization sketch for MySensors usage.")); Serial.println(F("-------------------------------------------")); #ifndef USE_SOFT_SIGNING // Wake device before starting operations ret_code = sha204.sha204c_wakeup(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to wake device. Response: ")); Serial.println(ret_code, HEX); halt(); } // Read out lock config bits to determine if locking is possible ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } #endif #ifdef STORE_SOFT_KEY #ifdef USER_SOFT_KEY memcpy(key, user_soft_key_data, 32); Serial.println(F("Using this user supplied soft HMAC key:")); #else // Retrieve random value to use as soft HMAC key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 32; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_KEY Serial.print("#define MY_SOFT_HMAC_KEY "); for (int i=0; i<32; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 31) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); #endif // STORE_SOFT_KEY #ifdef STORE_SOFT_SERIAL #ifdef USER_SOFT_SERIAL memcpy(key, user_soft_serial, 9); Serial.println(F("Using this user supplied soft serial:")); #else // Retrieve random value to use as serial #ifdef USE_SOFT_SIGNING for (int i = 0; i < 9; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft serial:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random serial generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 9); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft serial:")); } else { Serial.println(F("Serial is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_SERIAL Serial.print("#define MY_SOFT_SERIAL "); for (int i=0; i<9; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 8) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); #endif // STORE_SOFT_SERIAL #ifdef STORE_AES_KEY #ifdef USER_AES_KEY memcpy(key, user_aes_key, 16); Serial.println(F("Using this user supplied AES key:")); #else // Retrieve random value to use as key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 16; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This key will be stored in EEPROM as AES key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This key will be stored in EEPROM as AES key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_AES_KEY Serial.print("#define MY_AES_KEY "); for (int i=0; i<16; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 15) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, 16); #endif // STORE_AES_KEY #ifdef USE_SOFT_SIGNING Serial.println(F("EEPROM configuration:")); dump_configuration(); #else // Output device revision on console ret_code = sha204.sha204m_dev_rev(tx_buffer, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device revision. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.print(F("Device revision: ")); for (int i=0; i<4; i++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+i], HEX); } Serial.println(); } // Output serial number on console ret_code = sha204.getSerialNumber(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to obtain device serial number. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.print(F("Device serial: ")); Serial.print('{'); for (int i=0; i<9; i++) { Serial.print(F("0x")); if (rx_buffer[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[i], HEX); if (i < 8) { Serial.print(','); } } Serial.print('}'); Serial.println(); for (int i=0; i<9; i++) { if (rx_buffer[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[i], HEX); } Serial.println(); } if (lockConfig != 0x00) { // Write config and get CRC for the updated config crc = write_config_and_get_crc(); // List current configuration before attempting to lock Serial.println(F("Chip configuration:")); dump_configuration(); #ifdef LOCK_CONFIGURATION // Purge serial input buffer #ifndef SKIP_UART_CONFIRMATION while (Serial.available()) { Serial.read(); } Serial.println(F("Send SPACE character now to lock the configuration...")); while (Serial.available() == 0); if (Serial.read() == ' ') #endif //not SKIP_UART_CONFIRMATION { Serial.println(F("Locking configuration...")); // Correct sequence, resync chip ret_code = sha204.sha204c_resync(SHA204_RSP_SIZE_MAX, rx_buffer); if (ret_code != SHA204_SUCCESS && ret_code != SHA204_RESYNC_WITH_WAKEUP) { Serial.print(F("Resync failed. Response: ")); Serial.println(ret_code, HEX); halt(); } // Lock configuration zone ret_code = sha204.sha204m_execute(SHA204_LOCK, SHA204_ZONE_CONFIG, crc, 0, NULL, 0, NULL, 0, NULL, LOCK_COUNT, tx_buffer, LOCK_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Configuration lock failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.println(F("Configuration locked.")); // Update lock flags after locking ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } } } #ifndef SKIP_UART_CONFIRMATION else { Serial.println(F("Unexpected answer. Skipping lock.")); } #endif //not SKIP_UART_CONFIRMATION #else //LOCK_CONFIGURATION Serial.println(F("Configuration not locked. Define LOCK_CONFIGURATION to lock for real.")); #endif } else { Serial.println(F("Skipping configuration write and lock (configuration already locked).")); Serial.println(F("Chip configuration:")); dump_configuration(); } #ifdef SKIP_KEY_STORAGE Serial.println(F("Disable SKIP_KEY_STORAGE to store key.")); #else #ifdef USER_KEY memcpy(key, user_key_data, 32); Serial.println(F("Using this user supplied HMAC key:")); #else // Retrieve random value to use as key ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("Take note of this key, it will never be the shown again:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif Serial.print("#define MY_HMAC_KEY "); for (int i=0; i<32; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 31) { Serial.print(','); } if (i+1 == 16) { Serial.print("\\\n "); } } Serial.println(); // It will not be possible to write the key if the configuration zone is unlocked if (lockConfig == 0x00) { // Write the key to the appropriate slot in the data zone Serial.println(F("Writing key to slot 0...")); write_key(key); } else { Serial.println(F("Skipping key storage (configuration not locked).")); Serial.println(F("The configuration must be locked to be able to write a key.")); } #endif if (lockValue != 0x00) { #ifdef LOCK_DATA #ifndef SKIP_UART_CONFIRMATION while (Serial.available()) { Serial.read(); } Serial.println(F("Send SPACE character to lock data...")); while (Serial.available() == 0); if (Serial.read() == ' ') #endif //not SKIP_UART_CONFIRMATION { // Correct sequence, resync chip ret_code = sha204.sha204c_resync(SHA204_RSP_SIZE_MAX, rx_buffer); if (ret_code != SHA204_SUCCESS && ret_code != SHA204_RESYNC_WITH_WAKEUP) { Serial.print(F("Resync failed. Response: ")); Serial.println(ret_code, HEX); halt(); } // If configuration is unlocked, key is not updated. Locking data in this case will cause // slot 0 to contain an unknown (or factory default) key, and this is in practically any // usecase not the desired behaviour, so ask for additional confirmation in this case. if (lockConfig != 0x00) { while (Serial.available()) { Serial.read(); } Serial.println(F("*** ATTENTION ***")); Serial.println(F("Configuration is not locked. Are you ABSULOUTELY SURE you want to lock data?")); Serial.println(F("Locking data at this stage will cause slot 0 to contain a factory default key")); Serial.println( F("which cannot be change after locking is done. This is in practically any usecase")); Serial.println(F("NOT the desired behavour. Send SPACE character now to lock data anyway...")); while (Serial.available() == 0); if (Serial.read() != ' ') { Serial.println(F("Unexpected answer. Skipping lock.")); halt(); } } // Lock data zone ret_code = sha204.sha204m_execute(SHA204_LOCK, SHA204_ZONE_DATA | LOCK_ZONE_NO_CRC, 0x0000, 0, NULL, 0, NULL, 0, NULL, LOCK_COUNT, tx_buffer, LOCK_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Data lock failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.println(F("Data locked.")); // Update lock flags after locking ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } } } #ifndef SKIP_UART_CONFIRMATION else { Serial.println(F("Unexpected answer. Skipping lock.")); } #endif //not SKIP_UART_CONFIRMATION #else //LOCK_DATA Serial.println(F("Data not locked. Define LOCK_DATA to lock for real.")); #endif } else { Serial.println(F("Skipping OTP/data zone lock (zone already locked).")); } #endif // not USE_SOFT_SIGNING Serial.println(F("--------------------------------")); Serial.println(F("Personalization is now complete.")); #ifndef USE_SOFT_SIGNING Serial.print(F("Configuration is ")); if (lockConfig == 0x00) { Serial.println("LOCKED"); } else { Serial.println("UNLOCKED"); } Serial.print(F("Data is ")); if (lockValue == 0x00) { Serial.println("LOCKED"); } else { Serial.println("UNLOCKED"); } #endif } /** @brief Sketch execution code */ void loop() { }```@meddie sorry, I cannot see anything out of the ordinary. What hardware do you run on? SAMD? I know the personalizer to work on AVR.
Have you executed a sketch between personalizer rounds? Perhaps it overwrite parts of the eeprom. -
@meddie sorry, I cannot see anything out of the ordinary. What hardware do you run on? SAMD? I know the personalizer to work on AVR.
Have you executed a sketch between personalizer rounds? Perhaps it overwrite parts of the eeprom.@Anticimex
the troubles i have on sensebender gateway its a samd. On the micro (avr based) works fine.
On the gateway i didnt upload a sketch between. I have uploaded the personalizer sketch and after them i tried the unmoded personalizer. -
@Anticimex
the interesting thing is when i upload the same sketch to the sensebender micro it works the AES Key will be stored correctly.
But on the Sensebender Gateway only the first two digits -
eeprom on samd is handled differently, than avr, since it's an external I2C eeprom. So the normal avr commands for read/write to the eeprom doesn't work.
the pieces that handle eeprom is located in MyHwSAMD.cpp between line 45 and 100
https://github.com/mysensors/MySensors/blob/development/core/MyHwSAMD.cpp#L45 -
eeprom on samd is handled differently, than avr, since it's an external I2C eeprom. So the normal avr commands for read/write to the eeprom doesn't work.
the pieces that handle eeprom is located in MyHwSAMD.cpp between line 45 and 100
https://github.com/mysensors/MySensors/blob/development/core/MyHwSAMD.cpp#L45 -
@tbowmo
sorry can you say me please what i have to add to the sketch that will store my aes key on the sensebender gateway?
I am a very very noob
thanks@meddie could you please try an experiment?
Configure the personalizer to use soft signing and store a soft hmac key and serial to eeprom? Just make up some numbers as keys and see if the same problem happen with those or if it is just the AES key that fail. -
@meddie could you please try an experiment?
Configure the personalizer to use soft signing and store a soft hmac key and serial to eeprom? Just make up some numbers as keys and see if the same problem happen with those or if it is just the AES key that fail.@Anticimex
yes of course!!!
here is the sketch:#include "sha204_library.h" #include "sha204_lib_return_codes.h" #define MY_CORE_ONLY #include <MySensors.h> // Doxygen specific constructs, not included when built normally // This is used to enable disabled macros/definitions to be included in the documentation as well. #if DOXYGEN #define LOCK_CONFIGURATION #define LOCK_DATA #define SKIP_KEY_STORAGE #define USER_KEY #define SKIP_UART_CONFIRMATION #define USE_SOFT_SIGNING #define STORE_SOFT_KEY #define USER_SOFT_KEY #define STORE_SOFT_SERIAL #define USER_SOFT_SERIAL #define STORE_AES_KEY #define USER_AES_KEY #endif #define LOCK_CONFIGURATION //#define LOCK_DATA //#define SKIP_KEY_STORAGE //#define USER_KEY //#define SKIP_UART_CONFIRMATION #define USE_SOFT_SIGNING #define STORE_SOFT_KEY #define USER_SOFT_KEY #define STORE_SOFT_SERIAL #define USER_SOFT_SERIAL #define STORE_AES_KEY //#define USER_AES_KEY #if defined(SKIP_UART_CONFIRMATION) && !defined(USER_KEY) #error You have to define USER_KEY for boards that does not have UART #endif #ifdef USER_KEY /** @brief The user-defined HMAC key to use for personalization */ #define MY_HMAC_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store in key slot 0 */ const uint8_t user_key_data[32] = {MY_HMAC_KEY}; #endif #ifdef USER_SOFT_KEY /** @brief The user-defined soft HMAC key to use for EEPROM personalization */ #define MY_SOFT_HMAC_KEY 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x010,0x11,0x12,0x13,0x14,0x15,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,0xAA,0xAB,0xBA,0xBB,0xAC,0xAD,0xAE,0xEB,0xEC,0xED,0xDD /** @brief The data to store as soft HMAC key in EEPROM */ const uint8_t user_soft_key_data[32] = {MY_SOFT_HMAC_KEY}; #endif #ifdef USER_SOFT_SERIAL /** @brief The user-defined soft serial to use for EEPROM personalization */ #define MY_SOFT_SERIAL 0x10,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02 /** @brief The data to store as soft serial in EEPROM */ const uint8_t user_soft_serial[9] = {MY_SOFT_SERIAL}; #endif #ifdef USER_AES_KEY /** @brief The user-defined AES key to use for EEPROM personalization */ #define MY_AES_KEY 0x15,0x14,0x13,0x12,0x11,0x10,0x09,0x08,0x07,0x06,0x05,0x05,0x04,0x03,0x14,0x15 /** @brief The data to store as AES key in EEPROM */ const uint8_t user_aes_key[16] = {MY_AES_KEY}; #endif #ifndef USE_SOFT_SIGNING const int sha204Pin = MY_SIGNING_ATSHA204_PIN; //!< The IO pin to use for ATSHA204A atsha204Class sha204(sha204Pin); #endif /** @brief Print a error notice and halt the execution */ void halt() { Serial.println(F("Halting!")); while(1); } #ifndef USE_SOFT_SIGNING uint16_t write_config_and_get_crc() { uint16_t crc = 0; uint8_t config_word[4]; uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; bool do_write; for (int i=0; i < 88; i += 4) { do_write = true; if (i == 20) { config_word[0] = 0x8F; config_word[1] = 0x80; config_word[2] = 0x80; config_word[3] = 0xA1; } else if (i == 24) { config_word[0] = 0x82; config_word[1] = 0xE0; config_word[2] = 0xA3; config_word[3] = 0x60; } else if (i == 28) { config_word[0] = 0x94; config_word[1] = 0x40; config_word[2] = 0xA0; config_word[3] = 0x85; } else if (i == 32) { config_word[0] = 0x86; config_word[1] = 0x40; config_word[2] = 0x87; config_word[3] = 0x07; } else if (i == 36) { config_word[0] = 0x0F; config_word[1] = 0x00; config_word[2] = 0x89; config_word[3] = 0xF2; } else if (i == 40) { config_word[0] = 0x8A; config_word[1] = 0x7A; config_word[2] = 0x0B; config_word[3] = 0x8B; } else if (i == 44) { config_word[0] = 0x0C; config_word[1] = 0x4C; config_word[2] = 0xDD; config_word[3] = 0x4D; } else if (i == 48) { config_word[0] = 0xC2; config_word[1] = 0x42; config_word[2] = 0xAF; config_word[3] = 0x8F; } else if (i == 52 || i == 56 || i == 60 || i == 64) { config_word[0] = 0xFF; config_word[1] = 0x00; config_word[2] = 0xFF; config_word[3] = 0x00; } else if (i == 68 || i == 72 || i == 76 || i == 80) { config_word[0] = 0xFF; config_word[1] = 0xFF; config_word[2] = 0xFF; config_word[3] = 0xFF; } else { // All other configs are untouched ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } // Set config_word to the read data config_word[0] = rx_buffer[SHA204_BUFFER_POS_DATA+0]; config_word[1] = rx_buffer[SHA204_BUFFER_POS_DATA+1]; config_word[2] = rx_buffer[SHA204_BUFFER_POS_DATA+2]; config_word[3] = rx_buffer[SHA204_BUFFER_POS_DATA+3]; do_write = false; } // Update crc with CRC for the current word crc = sha204.calculateAndUpdateCrc(4, config_word, crc); // Write config word if (do_write) { ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_CONFIG, i >> 2, 4, config_word, 0, NULL, 0, NULL, WRITE_COUNT_SHORT, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write config word at address ")); Serial.print(i); Serial.print(F(". Response: ")); Serial.println(ret_code, HEX); halt(); } } } return crc; } void write_key(uint8_t* key) { uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; // Write key to slot 0 ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_DATA | SHA204_ZONE_COUNT_FLAG, 0, SHA204_ZONE_ACCESS_32, key, 0, NULL, 0, NULL, WRITE_COUNT_LONG, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write key to slot 0. Response: ")); Serial.println(ret_code, HEX); halt(); } } #endif // not USE_SOFT_SIGNING /** @brief Dump current configuration to UART */ void dump_configuration() { uint8_t buffer[32]; #ifndef USE_SOFT_SIGNING Serial.println(F("EEPROM DATA:")); #endif hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); Serial.print(F("SOFT_HMAC_KEY | ")); for (int j=0; j<32; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); Serial.print(F("SOFT_SERIAL | ")); for (int j=0; j<9; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, 16); Serial.print(F("AES_KEY | ")); for (int j=0; j<16; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; Serial.println(F("ATSHA204A DATA:")); for (int i=0; i < 88; i += 4) { ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } if (i == 0x00) { Serial.print(F(" SN[0:1] | SN[2:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x04) { Serial.print(F(" Revnum | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x08) { Serial.print(F(" SN[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x0C) { Serial.print(F(" SN[8] | Reserved13 | I2CEnable | Reserved15 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x10) { Serial.print(F(" I2CAddress | TempOffset | OTPmode | SelectorMode | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x14) { Serial.print(F(" SlotConfig00 | SlotConfig01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x18) { Serial.print(F(" SlotConfig02 | SlotConfig03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x1C) { Serial.print(F(" SlotConfig04 | SlotConfig05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x20) { Serial.print(F(" SlotConfig06 | SlotConfig07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x24) { Serial.print(F(" SlotConfig08 | SlotConfig09 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x28) { Serial.print(F(" SlotConfig0A | SlotConfig0B | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x2C) { Serial.print(F(" SlotConfig0C | SlotConfig0D | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x30) { Serial.print(F(" SlotConfig0E | SlotConfig0F | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x34) { Serial.print(F(" UseFlag00 | UpdateCount00 | UseFlag01 | UpdateCount01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x38) { Serial.print(F(" UseFlag02 | UpdateCount02 | UseFlag03 | UpdateCount03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x3C) { Serial.print(F(" UseFlag04 | UpdateCount04 | UseFlag05 | UpdateCount05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x40) { Serial.print(F(" UseFlag06 | UpdateCount06 | UseFlag07 | UpdateCount07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x44) { Serial.print(F(" LastKeyUse[0:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x48) { Serial.print(F(" LastKeyUse[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x4C) { Serial.print(F(" LastKeyUse[8:B] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x50) { Serial.print(F(" LastKeyUse[C:F] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x54) { Serial.print(F(" UserExtra | Selector | LockValue | LockConfig | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } } #endif // not USE_SOFT_SIGNING } /** @brief Sketch setup code */ void setup() { // Delay startup a bit for serial consoles to catch up unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)500); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; uint8_t lockConfig = 0; uint8_t lockValue = 0; uint16_t crc; (void)crc; #else // initialize pseudo-RNG randomSeed(analogRead(MY_SIGNING_SOFT_RANDOMSEED_PIN)); #endif uint8_t key[32]; (void)key; Serial.begin(9600); hwInit(); Serial.println(F("Personalization sketch for MySensors usage.")); Serial.println(F("-------------------------------------------")); #ifndef USE_SOFT_SIGNING // Wake device before starting operations ret_code = sha204.sha204c_wakeup(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to wake device. Response: ")); Serial.println(ret_code, HEX); halt(); } // Read out lock config bits to determine if locking is possible ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } #endif #ifdef STORE_SOFT_KEY #ifdef USER_SOFT_KEY memcpy(key, user_soft_key_data, 32); Serial.println(F("Using this user supplied soft HMAC key:")); #else // Retrieve random value to use as soft HMAC key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 32; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_KEY Serial.print("#define MY_SOFT_HMAC_KEY "); for (int i=0; i<32; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 31) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); #endif // STORE_SOFT_KEY #ifdef STORE_SOFT_SERIAL #ifdef USER_SOFT_SERIAL memcpy(key, user_soft_serial, 9); Serial.println(F("Using this user supplied soft serial:")); #else // Retrieve random value to use as serial #ifdef USE_SOFT_SIGNING for (int i = 0; i < 9; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft serial:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random serial generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 9); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft serial:")); } else { Serial.println(F("Serial is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_SERIAL Serial.print("#define MY_SOFT_SERIAL "); for (int i=0; i<9; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 8) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); #endif // STORE_SOFT_SERIAL #ifdef STORE_AES_KEY #ifdef USER_AES_KEY memcpy(key, user_aes_key, 16); Serial.println(F("Using this user supplied AES key:")); #else // Retrieve random value to use as key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 16; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This key will be stored in EEPROM as AES key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This key will be stored in EEPROM as AES key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_AES_KEY Serial.print("#define MY_AES_KEY "); for (int i=0; i<16; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 15) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, 16); #endif // STORE_AES_KEY #ifdef USE_SOFT_SIGNING Serial.println(F("EEPROM configuration:")); dump_configuration(); #else // Output device revision on console ret_code = sha204.sha204m_dev_rev(tx_buffer, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device revision. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.print(F("Device revision: ")); for (int i=0; i<4; i++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+i], HEX); } Serial.println(); } // Output serial number on console ret_code = sha204.getSerialNumber(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to obtain device serial number. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.print(F("Device serial: ")); Serial.print('{'); for (int i=0; i<9; i++) { Serial.print(F("0x")); if (rx_buffer[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[i], HEX); if (i < 8) { Serial.print(','); } } Serial.print('}'); Serial.println(); for (int i=0; i<9; i++) { if (rx_buffer[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[i], HEX); } Serial.println(); } if (lockConfig != 0x00) { // Write config and get CRC for the updated config crc = write_config_and_get_crc(); // List current configuration before attempting to lock Serial.println(F("Chip configuration:")); dump_configuration(); #ifdef LOCK_CONFIGURATION // Purge serial input buffer #ifndef SKIP_UART_CONFIRMATION while (Serial.available()) { Serial.read(); } Serial.println(F("Send SPACE character now to lock the configuration...")); while (Serial.available() == 0); if (Serial.read() == ' ') #endif //not SKIP_UART_CONFIRMATION { Serial.println(F("Locking configuration...")); // Correct sequence, resync chip ret_code = sha204.sha204c_resync(SHA204_RSP_SIZE_MAX, rx_buffer); if (ret_code != SHA204_SUCCESS && ret_code != SHA204_RESYNC_WITH_WAKEUP) { Serial.print(F("Resync failed. Response: ")); Serial.println(ret_code, HEX); halt(); } // Lock configuration zone ret_code = sha204.sha204m_execute(SHA204_LOCK, SHA204_ZONE_CONFIG, crc, 0, NULL, 0, NULL, 0, NULL, LOCK_COUNT, tx_buffer, LOCK_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Configuration lock failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.println(F("Configuration locked.")); // Update lock flags after locking ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } } } #ifndef SKIP_UART_CONFIRMATION else { Serial.println(F("Unexpected answer. Skipping lock.")); } #endif //not SKIP_UART_CONFIRMATION #else //LOCK_CONFIGURATION Serial.println(F("Configuration not locked. Define LOCK_CONFIGURATION to lock for real.")); #endif } else { Serial.println(F("Skipping configuration write and lock (configuration already locked).")); Serial.println(F("Chip configuration:")); dump_configuration(); } #ifdef SKIP_KEY_STORAGE Serial.println(F("Disable SKIP_KEY_STORAGE to store key.")); #else #ifdef USER_KEY memcpy(key, user_key_data, 32); Serial.println(F("Using this user supplied HMAC key:")); #else // Retrieve random value to use as key ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("Take note of this key, it will never be the shown again:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif Serial.print("#define MY_HMAC_KEY "); for (int i=0; i<32; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 31) { Serial.print(','); } if (i+1 == 16) { Serial.print("\\\n "); } } Serial.println(); // It will not be possible to write the key if the configuration zone is unlocked if (lockConfig == 0x00) { // Write the key to the appropriate slot in the data zone Serial.println(F("Writing key to slot 0...")); write_key(key); } else { Serial.println(F("Skipping key storage (configuration not locked).")); Serial.println(F("The configuration must be locked to be able to write a key.")); } #endif if (lockValue != 0x00) { #ifdef LOCK_DATA #ifndef SKIP_UART_CONFIRMATION while (Serial.available()) { Serial.read(); } Serial.println(F("Send SPACE character to lock data...")); while (Serial.available() == 0); if (Serial.read() == ' ') #endif //not SKIP_UART_CONFIRMATION { // Correct sequence, resync chip ret_code = sha204.sha204c_resync(SHA204_RSP_SIZE_MAX, rx_buffer); if (ret_code != SHA204_SUCCESS && ret_code != SHA204_RESYNC_WITH_WAKEUP) { Serial.print(F("Resync failed. Response: ")); Serial.println(ret_code, HEX); halt(); } // If configuration is unlocked, key is not updated. Locking data in this case will cause // slot 0 to contain an unknown (or factory default) key, and this is in practically any // usecase not the desired behaviour, so ask for additional confirmation in this case. if (lockConfig != 0x00) { while (Serial.available()) { Serial.read(); } Serial.println(F("*** ATTENTION ***")); Serial.println(F("Configuration is not locked. Are you ABSULOUTELY SURE you want to lock data?")); Serial.println(F("Locking data at this stage will cause slot 0 to contain a factory default key")); Serial.println( F("which cannot be change after locking is done. This is in practically any usecase")); Serial.println(F("NOT the desired behavour. Send SPACE character now to lock data anyway...")); while (Serial.available() == 0); if (Serial.read() != ' ') { Serial.println(F("Unexpected answer. Skipping lock.")); halt(); } } // Lock data zone ret_code = sha204.sha204m_execute(SHA204_LOCK, SHA204_ZONE_DATA | LOCK_ZONE_NO_CRC, 0x0000, 0, NULL, 0, NULL, 0, NULL, LOCK_COUNT, tx_buffer, LOCK_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Data lock failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { Serial.println(F("Data locked.")); // Update lock flags after locking ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } } } #ifndef SKIP_UART_CONFIRMATION else { Serial.println(F("Unexpected answer. Skipping lock.")); } #endif //not SKIP_UART_CONFIRMATION #else //LOCK_DATA Serial.println(F("Data not locked. Define LOCK_DATA to lock for real.")); #endif } else { Serial.println(F("Skipping OTP/data zone lock (zone already locked).")); } #endif // not USE_SOFT_SIGNING Serial.println(F("--------------------------------")); Serial.println(F("Personalization is now complete.")); #ifndef USE_SOFT_SIGNING Serial.print(F("Configuration is ")); if (lockConfig == 0x00) { Serial.println("LOCKED"); } else { Serial.println("UNLOCKED"); } Serial.print(F("Data is ")); if (lockValue == 0x00) { Serial.println("LOCKED"); } else { Serial.println("UNLOCKED"); } #endif } /** @brief Sketch execution code */ void loop() { } -
@meddie could you please try an experiment?
Configure the personalizer to use soft signing and store a soft hmac key and serial to eeprom? Just make up some numbers as keys and see if the same problem happen with those or if it is just the AES key that fail.@Anticimex
and this is the serial output:This key will be stored in EEPROM as AES key: #define MY_AES_KEY 0x6A,0x2B,0xF7,0xFB,0x03,0x8D,0x03,0x85,0x4D,0xDA,0x2D,0x89,0x9F,0xAD,0x8B,0x4F EEPROM configuration: SOFT_HMAC_KEY | 01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF SOFT_SERIAL | 10FFFFFFFFFFFFFFFF AES_KEY | 6AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -------------------------------- Personalization is now complete. -
@Anticimex
and this is the serial output:This key will be stored in EEPROM as AES key: #define MY_AES_KEY 0x6A,0x2B,0xF7,0xFB,0x03,0x8D,0x03,0x85,0x4D,0xDA,0x2D,0x89,0x9F,0xAD,0x8B,0x4F EEPROM configuration: SOFT_HMAC_KEY | 01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF SOFT_SERIAL | 10FFFFFFFFFFFFFFFF AES_KEY | 6AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -------------------------------- Personalization is now complete. -
We will investigate this further. Thanks for identifying the issue. Perhaps you could test signing with atsha on the gateway. That should work since it does not depend on eeprom.
-
We will investigate this further. Thanks for identifying the issue. Perhaps you could test signing with atsha on the gateway. That should work since it does not depend on eeprom.
@Anticimex
thank you very much for your support and for your patience with me!!!!
i just tried and the signing is working fine!!!!
i look forward to try the encryption! i