Skip to content
  • MySensors
  • OpenHardware.io
  • Categories
  • Recent
  • Tags
  • Popular
Skins
  • Light
  • Brite
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • Default (No Skin)
  • No Skin
Collapse
Brand Logo
  1. Home
  2. My Project
  3. Irrigation Controller (up to 16 valves with Shift Registers)

Irrigation Controller (up to 16 valves with Shift Registers)

Scheduled Pinned Locked Moved My Project
371 Posts 56 Posters 248.1k Views 52 Watching
  • Oldest to Newest
  • Newest to Oldest
  • Most Votes
Reply
  • Reply as topic
Log in to reply
This topic has been deleted. Only users with topic management privileges can see it.
  • M Offline
    M Offline
    moffen666
    wrote on last edited by
    #99

    Thx Bulldog for all the help, everything seems to be working as it should now.

    Keep up the good work :+1:

    Updated code for Domoticz.

    /*
    MySprinkler for MySensors
    
    Arduino Multi-Zone Sprinkler Control
    
    May 31, 2015
    
    *** Version 2.0
    
    *** Upgraded to http://MySensors.org version 1.4.1
    *** Expanded for up to 16 Valves
    *** Setup for active low relay board or comment out #define ACTIVE_LOW to switch to active high
    *** Switch to bitshift method vs byte arrays
    *** Changed RUN_ALL_ZONES Vera device to 0 (was highest valve)
    *** Added optional LCD display featuring remaining time, date last ran & current time
    *** Features 'raindrop' and 'clock' icons which indicate sensor is updating valve data and clock respectively
    *** Added single pushbutton menu to manually select which program to run (All Zones or a Single Zone)
    *** Added option of naming your Zones programmatically or with Vera (V_VAR3 used to store names)
    
    Utilizing your Vera home automation controller and the MySensors.org gateway you can
    control up to a sixteen zone irrigation system with only three digital pins.  This sketch
    will create NUMBER_OF_VALVES + 1 devices on your Vera controller
    
    This sketch features the following:
    
    * Allows you to cycle through All zones (RUN_ALL_ZONES) or individual zone (RUN_SINGLE_ZONE) control.
    * Use the 0th controller to activate RUN_ALL_ZONES (each zone in numeric sequence 1 to n)
      using Variable1 as the "ON" time in minutes in each of the vera devices created.
    * Use the individual zone controller to activate a single zone.  This feature uses
      Variable2 as the "ON" time for each individual device/zone.
    * Connect according to pinout below and uses Shift Registers as to allow the MySensors
      standard radio configuration and still leave available digital pins
    * Turning on any zone will stop the current process and begin that particular process.
    * Turning off any zone will stop the current process and turn off all zones.
    * To push your new time intervals for your zones, simply change the variable on your Vera and
      your arduino will call to Vera once a minute and update accordingly.  Variables will also be
      requested when the device is first powered on.
    * Pushbutton activation to RUN_ALL_ZONES, RUN_SINGLE_ZONE or halt the current program
    * LED status indicator
    
    PARTS LIST:
    Available from the MySensors store - http://www.mysensors.org/store/
    * Relays (8 channel)
    * Female Pin Header Connector Strip
    * Prototype Universal Printed Circuit Boards (PCB)
    * NRF24L01 Radio
    * Arduino (I used a Pro Mini)
    * FTDI USB to TTL Serial Adapter
    * Capacitors (10uf and .1uf)
    * 3.3v voltage regulator
    * Resistors (270 & 10K)
    * Female Dupont Cables
    * 1602 LCD (with I2C Interface)
    * LED
    * Push button
    * Shift Register (SN74HC595)
    * 2 Pole 5mm Pitch PCB Mount Screw Terminal Block
    * 3 Pole 5mm Pitch PCB Mount Screw Terminal Block
    * 22-24 gauge wire or similar (I used Cat5/Cat6 cable)
    * 18 gauge wire (for relay)
    * Irrigation Power Supply (24-Volt/750 mA Transformer)
    
    
    INSTRUCTIONS:
    
    * A step-by-step setup video is available here: http://youtu.be/l4GPRTsuHkI
    * After assembling your arduino, radio, decoupling capacitors, shift register(s), status LED, pushbutton LCD (I2C connected to
      A4 and A5) and relays, and load the sketch.
    * Following the instructions at https://MySensors.org include the device to your MySensors Gateway.
    * Verify that each new device has a Variable1, Variable2 and Variable3. Populate data accordingly with whole minutes for
      the RUN_ALL_ZONES routine (Variable1) and the RUN_SINGLE_ZONE routines (Variable 2).  The values entered for times may be zero and
      you may use the defaulet zone names by leaving Variable3 blank.
    * Once you have entered values for each zone and each variable, save the settings by pressing the red save button on your Vera.
    * Restart your arduino; verify the settings are loaded into your arduino with the serial monitor; the array will be printed
      on the serial monitor.
    * Your arduino should slow-flash, indicating that it is in ready mode.
    * There are multiple debug serial prints that can be monitored to assure that it is operating properly.
    * ***THIS SHOULD NO LONGER BE NEEDED*** The standard MySensors library now works. https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads for the I2C library, or use yours
    
    Contributed by Jim (BulldogLowell@gmail.com) with much contribution from Pete (pete.will@mysensors.org) and is released to the public domain
    */
    //
    #include <Wire.h>
    #include <Time.h>
    #include <MySensor.h>
    #include <SPI.h>
    #include <LiquidCrystal.h>
    #include <LiquidCrystal_I2C.h>
    
    
    //
    #define NUMBER_OF_VALVES 4  // Change this to set your valve count up to 16.
    #define VALVE_RESET_TIME 7500UL   // Change this (in milliseconds) for the time you need your valves to hydraulically reset and change state
    #define RADIO_ID AUTO  // Change this to fix your Radio ID or use Auto
    
    #define SKETCH_NAME "MySprinkler Domoticz"
    #define SKETCH_VERSION "2.0"
    //
    #define CHILD_ID_SPRINKLER 0
    //
    //#define ACTIVE_LOW // comment out this line if your relays are active high
    //
    #define DEBUG_ON   // comment out to supress serial monitor output
    //
    #ifdef ACTIVE_LOW
    #define BITSHIFT_VALVE_NUMBER ~(1U << (valveNumber-1))
    #define ALL_VALVES_OFF 0xFFFF
    #else
    #define BITSHIFT_VALVE_NUMBER (1U << (valveNumber-1))
    #define ALL_VALVES_OFF 0U
    #endif
    //
    #ifdef DEBUG_ON
    #define DEBUG_PRINT(x)   Serial.print(x)
    #define DEBUG_PRINTLN(x) Serial.println(x)
    #define SERIAL_START(x)  Serial.begin(x)
    #else
    #define DEBUG_PRINT(x)
    #define DEBUG_PRINTLN(x)
    #define SERIAL_START(x)
    #endif
    //
    typedef enum {
      STAND_BY_ALL_OFF, RUN_SINGLE_ZONE, RUN_ALL_ZONES, CYCLE_COMPLETE, ZONE_SELECT_MENU
    }
    SprinklerStates;
    //
    SprinklerStates state = STAND_BY_ALL_OFF;
    SprinklerStates lastState;
    byte menuState = 0;
    unsigned long menuTimer;
    byte countDownTime = 10;
    //
    int allZoneTime [NUMBER_OF_VALVES + 1]= {0, 1, 1, 1, 1};     // Insert values in min, 0 = all zone (always 0) this is a 4 chan relay
    int valveSoloTime [NUMBER_OF_VALVES + 1]= {0, 1, 1, 1, 1};   // Insert values in min, 0 = all zone (always 0) this is a 4 chan relay
    int valveNumber;
    int lastValve;
    unsigned long startMillis;
    const int ledPin = 5;
    const int waterButtonPin = 3;
    boolean buttonPushed = false;
    boolean showTime = true;
    boolean clockUpdating = false;
    boolean recentUpdate = true;
    const char *dayOfWeek[] = {
      "Null", "Sunday ", "Monday ", "Tuesday ", "Wednesday ", "Thursday ", "Friday ", "Saturday "
    };
    // Name your Zones here or use Vera to edit them by adding a name in Variable3...
    String valveNickName[17] = {
      "All Zones", "Zone 1", "Zone 2", "Zone 3", "Zone 4", "Zone 5", "Zone 6", "Zone 7", "Zone 8", "Zone 9", "Zone 10", "Zone 11", "Zone 12", "Zone 13", "Zone 14", "Zone 15", "Zone 16"
    };
    //
    time_t lastTimeRun = 0;
    //Setup Shift Register...
    const int latchPin = 8;
    const int clockPin = 4;
    const int dataPin  = 7;
    //
    byte clock[8] = {0x0, 0xe, 0x15, 0x17, 0x11, 0xe, 0x0}; // fetching time indicator
    byte raindrop[8] = {0x4, 0x4, 0xA, 0xA, 0x11, 0xE, 0x0,}; // fetching Valve Data indicator
    // Set the pins on the I2C chip used for LCD connections:
    //                    addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
    LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);  // Set the LCD I2C address to 0x27
    MySensor gw;
    //
    MyMessage msg1valve(CHILD_ID_SPRINKLER, V_LIGHT);
    MyMessage var1valve(CHILD_ID_SPRINKLER, V_VAR1);
    MyMessage var2valve(CHILD_ID_SPRINKLER, V_VAR2);
    //
    void setup()
    {
      SERIAL_START(115200);
      DEBUG_PRINTLN(F("Initialising..."));
      pinMode(latchPin, OUTPUT);
      pinMode(clockPin, OUTPUT);
      pinMode(dataPin, OUTPUT);
      pinMode(ledPin, OUTPUT);
      pinMode(waterButtonPin, INPUT_PULLUP);
      //pinMode(waterButtonPin, INPUT);
      attachInterrupt(1, PushButton, RISING); //May need to change for your Arduino model
      digitalWrite (ledPin, HIGH);
      DEBUG_PRINTLN(F("Turning All Valves Off..."));
      updateRelays(ALL_VALVES_OFF);
      //delay(5000);
      lcd.begin(16, 2); //(16 characters and 2 line display)
      lcd.clear();
      lcd.backlight();
      lcd.createChar(0, clock);
      lcd.createChar(1, raindrop);
      //
      //check for saved date in EEPROM
      DEBUG_PRINTLN(F("Checking EEPROM for stored date:"));
      delay(500);
      if (gw.loadState(0) == 0xFF); // EEPROM flag
      {
        DEBUG_PRINTLN(F("Retreiving last run time from EEPROM..."));
        for (int i = 0; i < 4 ; i++)
        {
          lastTimeRun = lastTimeRun << 8;
          lastTimeRun = lastTimeRun | gw.loadState(i + 1); // assemble 4 bytes into an ussigned long epoch timestamp
        }
      }
      gw.begin(getVariables, RADIO_ID, false); // Change 'false' to 'true' to create a Radio repeating node
      gw.sendSketchInfo(SKETCH_NAME, SKETCH_VERSION);
      for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
      {
        gw.present(i, S_LIGHT);
      }
      DEBUG_PRINTLN(F("Sensor Presentation Complete"));
      //
      digitalWrite (ledPin, LOW);
      DEBUG_PRINTLN(F("Ready..."));
      //
      lcd.setCursor(0, 0);
      lcd.print(F(" Syncing Time  "));
      lcd.setCursor(15, 0);
      lcd.write(byte(0));
      lcd.setCursor(0, 1);
      int clockCounter = 0;
      while (timeStatus() == timeNotSet && clockCounter < 21)
      {
        gw.process();
        gw.requestTime(receiveTime);
        DEBUG_PRINTLN(F("Requesting time from Gateway:"));
        delay(1000);
        lcd.print(".");
        clockCounter++;
        if (clockCounter > 16)
        {
          DEBUG_PRINTLN(F("Failed initial clock synchronization!"));
          lcd.clear();
          lcd.print(F("  Failed Clock  "));
          lcd.setCursor(0, 1);
          lcd.print(F(" Syncronization "));
          delay(2000);
          break;
        }
      }
      //
      lcd.clear();
    
      /*
      //Update valve data when first powered on
      for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
      {
        lcd.print(F(" Updating  "));
        lcd.setCursor(0, 1);
        lcd.print(F(" Valve Data: "));
        lcd.print(i);
        boolean flashIcon = false;
        DEBUG_PRINT(F("Calling for Valve "));
        DEBUG_PRINT(i);
        DEBUG_PRINTLN(F(" Data..."));
        while (gw.process() == false)
        {
          lcd.setCursor(15, 0);
          flashIcon = !flashIcon;
          flashIcon ? lcd.write(byte(1)) : lcd.print(F(" "));
          gw.request(i, V_VAR1);
          delay(100);
        }
        while (gw.process() == false)
        {
          lcd.setCursor(15, 0);
          flashIcon = !flashIcon;
          flashIcon ? lcd.write(byte(1)) : lcd.print(F(" "));
          gw.request(i, V_VAR2);
          delay(100);
        }
        while (gw.process() == false)
        {
          lcd.setCursor(15, 0);
          flashIcon = !flashIcon;
          flashIcon ? lcd.write(byte(1)) : lcd.print(F(" "));
          gw.request(i, V_VAR3);
          delay(100);
        }
      }
      */
      lcd.clear();
    }
    //
    void loop()
    {
      gw.process();
      updateClock();
      updateDisplay();
      //goGetValveTimes();
      //
      if (buttonPushed)
      {
        menuTimer = millis();
        DEBUG_PRINTLN(F("Button Pressed"));
        if (state == STAND_BY_ALL_OFF)
        {
          state = ZONE_SELECT_MENU;
          menuState = 0;
        }
        else if (state == ZONE_SELECT_MENU)
        {
          menuState++;
          if (menuState > NUMBER_OF_VALVES)
          {
            menuState = 0;
          }
        }
        else
        {
          state = STAND_BY_ALL_OFF;
        }
        buttonPushed = false;
      }
      if (state == STAND_BY_ALL_OFF)
      {
        slowToggleLED ();
        if (state != lastState)
        {
          updateRelays(ALL_VALVES_OFF);
          DEBUG_PRINTLN(F("State Changed... all Zones off"));
          for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
          {
            delay(50);
            gw.send(msg1valve.setSensor(i).set(false), false);
          }
          lcd.clear();
          lcd.setCursor(0,0);
          lcd.print(F("** Irrigation **"));
          lcd.setCursor(0,1);
          lcd.print(F("**   Halted   **"));
          delay(2000);
          lastValve = -1;
        }
      }
      //
      else if (state == RUN_ALL_ZONES)
      {
        if (lastValve != valveNumber)
        {
          for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
          {
            if (i == 0 || i == valveNumber)
            {
              gw.send(msg1valve.setSensor(i).set(true), false);
            }
            else
            {
              gw.send(msg1valve.setSensor(i).set(false), false);
            }
          }
        }
        lastValve = valveNumber;
        fastToggleLed();
        if (state != lastState)
        {
          valveNumber = 1;
          updateRelays(ALL_VALVES_OFF);
          DEBUG_PRINTLN(F("State Changed, Running All Zones..."));
        }
        unsigned long nowMillis = millis();
        if (nowMillis - startMillis < VALVE_RESET_TIME)
        {
          updateRelays(ALL_VALVES_OFF);
        }
        else if (nowMillis - startMillis < (allZoneTime[valveNumber] * 60000UL))
        {
          updateRelays(BITSHIFT_VALVE_NUMBER);
        }
        else
        {
          DEBUG_PRINTLN(F("Changing Valves..."));
          updateRelays(ALL_VALVES_OFF);
          startMillis = millis();
          valveNumber++;
          if (valveNumber > NUMBER_OF_VALVES)
          {
            state = CYCLE_COMPLETE;
            startMillis = millis();
            lastValve = -1;
            lastTimeRun = now();
            saveDateToEEPROM(lastTimeRun);
            for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
            {
              gw.send(msg1valve.setSensor(i).set(false), false);
            }
            DEBUG_PRINT(F("State = "));
            DEBUG_PRINTLN(state);
          }
        }
      }
      //
      else if (state == RUN_SINGLE_ZONE)
      {
        fastToggleLed();
        if (state != lastState)
        {
          for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
          {
            if (i == 0 || i == valveNumber)
            {
              gw.send(msg1valve.setSensor(i).set(true), false);
            }
            else
            {
              gw.send(msg1valve.setSensor(i).set(false), false);
            }
          }
          DEBUG_PRINTLN(F("State Changed, Single Zone Running..."));
          DEBUG_PRINT(F("Zone: "));
          DEBUG_PRINTLN(valveNumber);
        }
        unsigned long nowMillis = millis();
        if (nowMillis - startMillis < VALVE_RESET_TIME)
        {
          updateRelays(ALL_VALVES_OFF);
        }
        else if (nowMillis - startMillis < (valveSoloTime [valveNumber] * 60000UL))
        {
          updateRelays(BITSHIFT_VALVE_NUMBER);
        }
        else
        {
          updateRelays(ALL_VALVES_OFF);
          for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
          {
            gw.send(msg1valve.setSensor(i).set(false), false);
          }
          state = CYCLE_COMPLETE;
          startMillis = millis();
          DEBUG_PRINT(F("State = "));
          DEBUG_PRINTLN(state);
        }
        lastTimeRun = now();
      }
      else if (state == CYCLE_COMPLETE)
      {
        if (millis() - startMillis < 30000UL)
        {
          fastToggleLed();
        }
        else
        {
          state = STAND_BY_ALL_OFF;
        }
      }
      else if (state = ZONE_SELECT_MENU)
      {
        displayMenu();
      }
      lastState = state;
    }
    //
    void displayMenu(void)
    {
      static byte lastMenuState = -1;
      static int lastSecond;
      if (menuState != lastMenuState)
      {
        lcd.clear();
        lcd.setCursor(0, 0);
        lcd.print(valveNickName[menuState]);
        lcd.setCursor(0, 1);
        lcd.print(F("Starting"));
        DEBUG_PRINT(valveNickName[menuState]);
        Serial.print(F(" Starting Shortly"));
      }
      int thisSecond = (millis() - menuTimer) / 1000UL;
      if (thisSecond != lastSecond && thisSecond < 8)
      {
        lcd.print(F("."));
        Serial.print(".");
      }
      lastSecond = thisSecond;
      if (millis() - menuTimer > 10000UL)
      {
        startMillis = millis();
        if (menuState == 0)
        {
          valveNumber = 1;
          state = RUN_ALL_ZONES;
        }
        else
        {
          valveNumber = menuState;
          state = RUN_SINGLE_ZONE;
        }
      }
      else
      {
    
      }
      lastMenuState = menuState;
    }
    //
    void updateRelays(int value)
    {
      digitalWrite(latchPin, LOW);
      shiftOut(dataPin, clockPin, MSBFIRST, highByte(value));
      shiftOut(dataPin, clockPin, MSBFIRST, lowByte(value));
      digitalWrite(latchPin, HIGH);
    }
    //
    void PushButton() //interrupt with debounce
    {
      static unsigned long last_interrupt_time = 0;
      unsigned long interrupt_time = millis();
      if (interrupt_time - last_interrupt_time > 200)
      {
        buttonPushed = true;
      }
      last_interrupt_time = interrupt_time;
    }
    //
    void fastToggleLed()
    {
      static unsigned long fastLedTimer;
      if (millis() - fastLedTimer >= 100UL)
      {
        digitalWrite(ledPin, !digitalRead(ledPin));
        fastLedTimer = millis ();
      }
    }
    //
    void slowToggleLED ()
    {
      static unsigned long slowLedTimer;
      if (millis() - slowLedTimer >= 1250UL)
      {
        digitalWrite(ledPin, !digitalRead(ledPin));
        slowLedTimer = millis ();
      }
    }
    //
    void getVariables(const MyMessage &message)
    {
      boolean zoneTimeUpdate = false;
      if (message.isAck())
      {
        DEBUG_PRINTLN(F("This is an ack from gateway"));
      }
      for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
      {
        if (message.sensor == i)
        {
          if (message.type == V_LIGHT)
          {
            int switchState = atoi(message.data);
            if (switchState == 0)
            {
              state = STAND_BY_ALL_OFF;
              DEBUG_PRINTLN(F("Recieved Instruction to Cancel..."));
            }
            else
            {
              if (i == 0)
              {
                state = RUN_ALL_ZONES;
                valveNumber = 1;
                DEBUG_PRINTLN(F("Recieved Instruction to Run All Zones..."));
              }
              else
              {
                state = RUN_SINGLE_ZONE;
                valveNumber = i;
                DEBUG_PRINT(F("Recieved Instruction to Activate Zone: "));
                DEBUG_PRINTLN(i);
              }
            }
            startMillis = millis();
          }
          else if (message.type == V_VAR1)
          {
            int variable1 = atoi(message.data);// RUN_ALL_ZONES time
            DEBUG_PRINT(F("Recieved variable1 valve:"));
            DEBUG_PRINT(i);
            DEBUG_PRINT(F(" = "));
            DEBUG_PRINTLN(variable1);
            if (variable1 != allZoneTime[i])
            {
              allZoneTime[i] = variable1;
    
              zoneTimeUpdate = true;
            }
          }
          else if (message.type == V_VAR2)
          {
            int variable2 = atoi(message.data);// RUN_SINGLE_ZONE time
            DEBUG_PRINT(F("Recieved variable2 valve:"));
            DEBUG_PRINT(i);
            DEBUG_PRINT(F(" = "));
            DEBUG_PRINTLN(variable2);
            if (variable2 != valveSoloTime[i])
            {
              valveSoloTime[i] = variable2;
              zoneTimeUpdate = true;
            }
          }
          else if (message.type == V_VAR3)
          {
            String newMessage = String(message.data);
            if (newMessage.length() == 0) 
            {
              DEBUG_PRINT(F("No Name Recieved for zone "));
              DEBUG_PRINTLN(i);
              break;
            }
            if (newMessage.length() > 16)
            {
              newMessage.substring(0, 16);
            }
            valveNickName[i] = "";
            valveNickName[i] += newMessage;
            DEBUG_PRINT(F("Recieved new name for zone "));
            DEBUG_PRINT(i);
            DEBUG_PRINT(F(" and it is now called: "));
            DEBUG_PRINTLN(valveNickName[i]);
          }
        }
      }
      if (zoneTimeUpdate)
      {
        //
        DEBUG_PRINTLN(F("New Zone Times Recieved..."));
        for (byte i = 0; i <= NUMBER_OF_VALVES; i++)
        {
          if (i != 0)
          {
            DEBUG_PRINT(F("Zone "));
            DEBUG_PRINT(i);
            DEBUG_PRINT(F(" individual time: "));
            DEBUG_PRINT(valveSoloTime[i]);
            DEBUG_PRINT(F(" group time: "));
            DEBUG_PRINTLN(allZoneTime[i]);
            recentUpdate = true;
          }
        }
      }
      else
      {
        recentUpdate = false;
      }
    }
    //
    void updateDisplay()
    {
      static unsigned long lastUpdateTime;
      static boolean displayToggle = false;
      //static byte toggleCounter = 0;
      static SprinklerStates lastDisplayState;
      if (state != lastDisplayState || millis() - lastUpdateTime >= 3000UL)
      {
        displayToggle = !displayToggle;
        switch (state) {
          case STAND_BY_ALL_OFF:
            //
            fastClear();
            lcd.setCursor(0, 0);
            if (displayToggle)
            {
              lcd.print(F("  System Ready "));
              if (clockUpdating)
              {
                lcd.setCursor(15, 0);
                lcd.write(byte(0));
              }
              lcd.setCursor(0, 1);
              lcd.print(hourFormat12() < 10 ? F(" ") : F(""));
              lcd.print(hourFormat12());
              lcd.print(minute() < 10 ? F(":0") : F(":"));
              lcd.print(minute());
              lcd.print(isAM() ? F("am") : F("pm"));
              lcd.print(month() < 10 ? F(" 0") : F(" "));
              lcd.print(month());
              lcd.print(day() < 10 ? F("/0") : F("/"));
              lcd.print(day());
              lcd.print(F("/"));
              lcd.print(year() % 100);
            }
            else
            {
              lcd.print(F("  Last Watered "));
              if (clockUpdating)
              {
                lcd.setCursor(15, 0);
                lcd.write(byte(0));
              }
              lcd.setCursor(0, 1);
              lcd.print(dayOfWeek[weekday(lastTimeRun)]);
              lcd.setCursor(11, 1);
              lcd.print(month(lastTimeRun) < 10 ? F(" ") : F(""));
              lcd.print(month(lastTimeRun));
              lcd.print(day(lastTimeRun) < 10 ? F("/0") : F("/"));
              lcd.print(day(lastTimeRun));
            }
            break;
          case RUN_SINGLE_ZONE:
            //
            fastClear();
            lcd.setCursor(0, 0);
            if (displayToggle)
            {
              lcd.print(F("Single Zone Mode"));
              lcd.setCursor(0, 1);
              lcd.print(F(" Zone:"));
              if (valveNumber < 10) lcd.print(F("0"));
              lcd.print(valveNumber);
              lcd.print(F(" Active"));
            }
            else
            {
              lcd.print(F(" Time Remaining "));
              lcd.setCursor(0, 1);
              if (valveSoloTime[valveNumber] == 0)
              {
                lcd.print(F(" No Valve Time "));
              }
              else
              {
                unsigned long timeRemaining = (valveSoloTime[valveNumber] * 60) - ((millis() - startMillis) / 1000);
                lcd.print(timeRemaining / 60 < 10 ? "   0" : "   ");
                lcd.print(timeRemaining / 60);
                lcd.print("min");
                lcd.print(timeRemaining % 60 < 10 ? " 0" : " ");
                lcd.print(timeRemaining % 60);
                lcd.print("sec  ");
              }
            }
            break;
          case RUN_ALL_ZONES:
            //
            fastClear();
            lcd.setCursor(0, 0);
            if (displayToggle)
            {
              lcd.print(F(" All-Zone  Mode "));
              lcd.setCursor(0, 1);
              lcd.print(F(" Zone:"));
              if (valveNumber < 10) lcd.print(F("0"));
              lcd.print(valveNumber);
              lcd.print(F(" Active "));
            }
            else
            {
              lcd.print(F(" Time Remaining "));
              lcd.setCursor(0, 1);
              int timeRemaining = (allZoneTime[valveNumber] * 60) - ((millis() - startMillis) / 1000);
              lcd.print((timeRemaining / 60) < 10 ? "   0" : "   ");
              lcd.print(timeRemaining / 60);
              lcd.print("min");
              lcd.print(timeRemaining % 60 < 10 ? " 0" : " ");
              lcd.print(timeRemaining % 60);
              lcd.print("sec  ");
            }
            break;
          case CYCLE_COMPLETE:
            //
            if (displayToggle)
            {
              lcd.setCursor(0, 0);
              lcd.print(F(" Watering Cycle "));
              lcd.setCursor(0, 1);
              lcd.print(F("    Complete    "));
            }
            else
            {
              int totalTimeRan = 0;
              for (int i = 1; i < NUMBER_OF_VALVES + 1; i++)
              {
                totalTimeRan += allZoneTime[i];
              }
              lcd.setCursor(0, 0);
              lcd.print(F(" Total Time Run "));
              lcd.setCursor(0, 1);
              lcd.print(totalTimeRan < 10 ? "   0" : "   ");
              lcd.print(totalTimeRan);
              lcd.print(" Minutes   ");
            }
        }
        lastUpdateTime = millis();
      }
      lastDisplayState = state;
    }
    void receiveTime(time_t newTime)
    {
      DEBUG_PRINTLN(F("Time value received and updated..."));
      int lastSecond = second();
      int lastMinute = minute();
      int lastHour = hour();
      setTime(newTime);
      if (((second() != lastSecond) || (minute() != lastMinute) || (hour() != lastHour)) || showTime)
      {
        DEBUG_PRINTLN(F("Clock updated...."));
        DEBUG_PRINT(F("Sensor's time currently set to:"));
        DEBUG_PRINT(hourFormat12() < 10 ? F(" 0") : F(" "));
        DEBUG_PRINT(hourFormat12());
        DEBUG_PRINT(minute() < 10 ? F(":0") : F(":"));
        DEBUG_PRINT(minute());
        DEBUG_PRINTLN(isAM() ? F("am") : F("pm"));
        DEBUG_PRINT(month());
        DEBUG_PRINT(F("/"));
        DEBUG_PRINT(day());
        DEBUG_PRINT(F("/"));
        DEBUG_PRINTLN(year());
        DEBUG_PRINTLN(dayOfWeek[weekday()]);
        showTime = false;
      }
      else
      {
        DEBUG_PRINTLN(F("Sensor's time did NOT need adjustment greater than 1 second."));
      }
      clockUpdating = false;
    }
    void fastClear()
    {
      lcd.setCursor(0, 0);
      lcd.print(F("                "));
      lcd.setCursor(0, 1);
      lcd.print(F("                "));
    }
    //
    void updateClock()
    {
      static unsigned long lastVeraGetTime;
      if (millis() - lastVeraGetTime >= 3600000UL) // updates clock time and gets zone times from vera once every hour
      {
        DEBUG_PRINTLN(F("Requesting time and valve data from Gateway..."));
        lcd.setCursor(15, 0);
        lcd.write(byte(0));
        clockUpdating = true;
        gw.requestTime(receiveTime);
        lastVeraGetTime = millis();
      }
    }
    //
    void saveDateToEEPROM(unsigned long theDate)
    {
      DEBUG_PRINTLN(F("Saving Last Run date"));
      if (gw.loadState(0) != 0xFF)
      {
        gw.saveState(0, 0xFF); // EEPROM flag for last date saved stored in EEPROM (location zero)
      }
      //
      for (int i = 1; i < 5; i++)
      {
        gw.saveState(5 - i, byte(theDate >> 8 * (i - 1))); // store epoch datestamp in 4 bytes of EEPROM starting in location one
      }
    }
    //
    void goGetValveTimes()
    {
      static unsigned long valveUpdateTime;
      static byte valveIndex = 1;
      if (millis() - valveUpdateTime >= 300000UL / NUMBER_OF_VALVES)// update each valve once every 5 mins (distributes the traffic)
      {
        DEBUG_PRINTLN(F("Calling for Valve Data..."));
        lcd.setCursor(15, 0);
        lcd.write(byte(1)); //lcd.write(1);
        gw.request(valveIndex, V_VAR1);
        gw.request(valveIndex, V_VAR2);
        gw.request(valveIndex, V_VAR3);
        valveUpdateTime = millis();
        valveIndex++;
        if (valveIndex > NUMBER_OF_VALVES + 1)
        {
          valveIndex = 1;
        }
      }
    }```
    1 Reply Last reply
    1
    • petewillP Offline
      petewillP Offline
      petewill
      Admin
      wrote on last edited by
      #100

      Hey Everyone,

      I just made a follow up video to this irrigation controller that shows my logic I'm using to save water. It's pretty specific to my environment but hopefully you can use some of the ideas to save water in your environment. I have attached the logic I used in my PLEG device.

      Pete

      PLEG Irrigation.pdf

      https://youtu.be/_voDZH2EBgw

      My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

      1 Reply Last reply
      1
      • epierreE Offline
        epierreE Offline
        epierre
        Hero Member
        wrote on last edited by
        #101

        Hello,

        looking at the project, I'm wondering why you propose 3.3V only, is this for the shift register and the screen ? Why not stay in 5V ?

        z-wave - Vera -&gt; Domoticz
        rfx - Domoticz &lt;- MyDomoAtHome &lt;- Imperihome
        mysensors -&gt; mysensors-gw -&gt; Domoticz

        petewillP 1 Reply Last reply
        0
        • epierreE epierre

          Hello,

          looking at the project, I'm wondering why you propose 3.3V only, is this for the shift register and the screen ? Why not stay in 5V ?

          petewillP Offline
          petewillP Offline
          petewill
          Admin
          wrote on last edited by
          #102

          @epierre Where did you see that I don't remember? Perhaps for the NRF radio?

          My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

          1 Reply Last reply
          0
          • epierreE Offline
            epierreE Offline
            epierre
            Hero Member
            wrote on last edited by
            #103

            @petewill it is here: http://www.mysensors.org/build/irrigation

            it is hard to know the BOM from the page, so I was wondering why you would neeed the powering adaptation if you input 5V

            z-wave - Vera -&gt; Domoticz
            rfx - Domoticz &lt;- MyDomoAtHome &lt;- Imperihome
            mysensors -&gt; mysensors-gw -&gt; Domoticz

            BulldogLowellB 1 Reply Last reply
            0
            • epierreE epierre

              @petewill it is here: http://www.mysensors.org/build/irrigation

              it is hard to know the BOM from the page, so I was wondering why you would neeed the powering adaptation if you input 5V

              BulldogLowellB Offline
              BulldogLowellB Offline
              BulldogLowell
              Contest Winner
              wrote on last edited by
              #104

              @epierre

              If you watch the video, you can see he's using the voltage regulator to supply power to the radio.

              Are you getting ready to build?

              epierreE 1 Reply Last reply
              0
              • BulldogLowellB BulldogLowell

                @epierre

                If you watch the video, you can see he's using the voltage regulator to supply power to the radio.

                Are you getting ready to build?

                epierreE Offline
                epierreE Offline
                epierre
                Hero Member
                wrote on last edited by
                #105

                @BulldogLowell said:

                @epierre
                Are you getting ready to build?

                I've ordered the 8 switch, I have soil moisture, leaf moisture, ground humidity, rain gauge and found some evapotranspiration algorithm so I have all inputs and now need to have outputs in parallel of my rainbird scheduler (too dumb...)

                So I'm ready to build as you say ;-)

                z-wave - Vera -&gt; Domoticz
                rfx - Domoticz &lt;- MyDomoAtHome &lt;- Imperihome
                mysensors -&gt; mysensors-gw -&gt; Domoticz

                1 Reply Last reply
                1
                • hekH hek

                  Added your project to the main site togeter with @petewill excellent new video.

                  http://www.mysensors.org/build/irrigation

                  https://youtu.be/l4GPRTsuHkI

                  C Offline
                  C Offline
                  charlybrown
                  wrote on last edited by
                  #106

                  @hek said:

                  Added your project to the main site togeter with @petewill excellent new video.

                  http://www.mysensors.org/build/irrigation

                  https://youtu.be/l4GPRTsuHkI
                  Excellent project.
                  Can you help me with the android code, to send instrucctions from my cell phone to Arduino? like on-off light , bomb, etc.

                  thanks for your time!
                  best regards.

                  1 Reply Last reply
                  0
                  • C Offline
                    C Offline
                    charlybrown
                    wrote on last edited by
                    #107

                    Excellent work. I need help with android code. Anybody can help me with this?

                    thanks

                    1 Reply Last reply
                    0
                    • S Offline
                      S Offline
                      shemmozhipandian
                      wrote on last edited by
                      #108

                      Hi,

                      I made the circuit, but later i realize it required vera controller to sync all the data. Is there other way or idea to send data to the built system.

                      petewillP 1 Reply Last reply
                      0
                      • S shemmozhipandian

                        Hi,

                        I made the circuit, but later i realize it required vera controller to sync all the data. Is there other way or idea to send data to the built system.

                        petewillP Offline
                        petewillP Offline
                        petewill
                        Admin
                        wrote on last edited by
                        #109

                        @shemmozhipandian Sorry for the delayed reply. It does require a controller (like Vera) but there are free ones out there. Take a look here: http://www.mysensors.org/controller/

                        I know Domoticz is free and seems to be fairly popular here. There are others as well. If you find one you like you may want to write a quick post to check compatibility. I personally use Vera so I'm not sure how the others work.

                        My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

                        1 Reply Last reply
                        0
                        • ? Offline
                          ? Offline
                          A Former User
                          wrote on last edited by
                          #110

                          Hello Pete, thanks for your hard work on this. Superb!
                          I want to build a irrigation controller like your project but can't figure out hows the wiring. On the wiki an image is shown but I can't see what the connections are in this "virtual proto board"
                          Is there something clearer or like a pinout to pin list?
                          I'm using an Arduino Nano, so things will be something different.
                          Thank you very much.

                          petewillP 1 Reply Last reply
                          0
                          • ? A Former User

                            Hello Pete, thanks for your hard work on this. Superb!
                            I want to build a irrigation controller like your project but can't figure out hows the wiring. On the wiki an image is shown but I can't see what the connections are in this "virtual proto board"
                            Is there something clearer or like a pinout to pin list?
                            I'm using an Arduino Nano, so things will be something different.
                            Thank you very much.

                            petewillP Offline
                            petewillP Offline
                            petewill
                            Admin
                            wrote on last edited by
                            #111

                            @Sergio Jim (@BulldogLowell) posted some more details above but here is my fritzing project as well. Hopefully you can zoom in where you need to see more.

                            Fritzing Irrigation Controller Wiring.fzz

                            My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

                            1 Reply Last reply
                            0
                            • ? Offline
                              ? Offline
                              A Former User
                              wrote on last edited by A Former User
                              #112

                              Mmm... I finally assembled the device. But I'm having problems with it. It doesn't activate/deactivates the relays. I'm getting the power for the relay board from the nano itself. Could that be the problem?
                              Also, my domoticz doesn't receive the off signal from the controller. (doens't turn the light off) and sometimes throws some error telling that can't contact the node.
                              BTW I tried to contac Bulldogloweel without success :sob:

                              petewillP 1 Reply Last reply
                              0
                              • ? A Former User

                                Mmm... I finally assembled the device. But I'm having problems with it. It doesn't activate/deactivates the relays. I'm getting the power for the relay board from the nano itself. Could that be the problem?
                                Also, my domoticz doesn't receive the off signal from the controller. (doens't turn the light off) and sometimes throws some error telling that can't contact the node.
                                BTW I tried to contac Bulldogloweel without success :sob:

                                petewillP Offline
                                petewillP Offline
                                petewill
                                Admin
                                wrote on last edited by
                                #113

                                @Sergio said:

                                Mmm... I finally assembled the device. But I'm having problems with it. It doesn't activate/deactivates the relays. I'm getting the power for the relay board from the nano itself. Could that be the problem?

                                Yes, that is most likely the problem. Most of the relays I have used need more power than what the arduino can supply. Try feeding it more power (like from a phone charger).

                                Also, my domoticz doesn't receive the off signal from the controller. (doens't turn the light off) and sometimes throws some error telling that can't contact the node.

                                Check the serial monitor with debug enabled. Does this happen every time? It could be radio issues. Do you have a 4.7uf cap on the radio? Is it close enough to your gateway?

                                My "How To" home automation video channel: https://www.youtube.com/channel/UCq_Evyh5PQALx4m4CQuxqkA

                                1 Reply Last reply
                                0
                                • BulldogLowellB BulldogLowell

                                  @moffen666

                                  I don't have Domoticz but I suspect that the callback isn't functioning.

                                  try populating the array with the desired times for each sequence. replace this:

                                  int allZoneTime [NUMBER_OF_VALVES + 1];
                                  int valveSoloTime [NUMBER_OF_VALVES + 1];
                                  

                                  with something like this:

                                  int allZoneTime [NUMBER_OF_VALVES + 1] = {0, 10, 10, 10, 5,<... how many valves you have with zero in the first position>} ;
                                  int valveSoloTime [NUMBER_OF_VALVES + 1] = {0, 5, 5, 5, 5,<... how many valves you have with zero in the first position>};
                                  

                                  This will load in the times that the program uses as your 'default' values. Then, you can check with Domoticz experts on getting the V_VAR variables working.

                                  fusion_manF Offline
                                  fusion_manF Offline
                                  fusion_man
                                  wrote on last edited by
                                  #114

                                  @BulldogLowell

                                  I need to add a relay for a master valve. This will open when any zone valves open. I think it could be mapped to All On 0(1) but I am not sure how to accomplish this. I don't know the code for that or electrical connection. I also noticed we are about maxed out of data (99%) using ProMini. Any ideas?

                                  1 Reply Last reply
                                  0
                                  • BulldogLowellB Offline
                                    BulldogLowellB Offline
                                    BulldogLowell
                                    Contest Winner
                                    wrote on last edited by BulldogLowell
                                    #115

                                    If you are worried about Program Space you can turn off Serial debug to rid yourself of a bunch of overhead in the sketch. I am not using String class so there is PLENTY of RAM and I've been using this for a while with no stack corruption issues:

                                    #define DEBUG_ON   // comment out to surpress serial monitor output
                                    

                                    if you propose to turn ON the master valve when each valve is cycled on, then I believe all you need to do is add that valve to the bitmask (logical OR) each time you updateRelays().

                                    void updateRelays(int value)
                                    {
                                      if(value)
                                      {
                                        value |= 0b0000000010000000;  // master is the eighth relay, there are 7 controlled in this example (active HIGH in this example)
                                      }
                                      digitalWrite(latchPin, LOW);
                                      shiftOut(dataPin, clockPin, MSBFIRST, highByte(value));
                                      shiftOut(dataPin, clockPin, MSBFIRST, lowByte(value));
                                      digitalWrite(latchPin, HIGH);
                                    }
                                    

                                    not tested

                                    fusion_manF 2 Replies Last reply
                                    0
                                    • BulldogLowellB BulldogLowell

                                      If you are worried about Program Space you can turn off Serial debug to rid yourself of a bunch of overhead in the sketch. I am not using String class so there is PLENTY of RAM and I've been using this for a while with no stack corruption issues:

                                      #define DEBUG_ON   // comment out to surpress serial monitor output
                                      

                                      if you propose to turn ON the master valve when each valve is cycled on, then I believe all you need to do is add that valve to the bitmask (logical OR) each time you updateRelays().

                                      void updateRelays(int value)
                                      {
                                        if(value)
                                        {
                                          value |= 0b0000000010000000;  // master is the eighth relay, there are 7 controlled in this example (active HIGH in this example)
                                        }
                                        digitalWrite(latchPin, LOW);
                                        shiftOut(dataPin, clockPin, MSBFIRST, highByte(value));
                                        shiftOut(dataPin, clockPin, MSBFIRST, lowByte(value));
                                        digitalWrite(latchPin, HIGH);
                                      }
                                      

                                      not tested

                                      fusion_manF Offline
                                      fusion_manF Offline
                                      fusion_man
                                      wrote on last edited by
                                      #116

                                      @BulldogLowell

                                      By commenting out the DEBUG, it went from 99% to 63% used memory.
                                      The modification to void updateRelays worked very nicely. I only wish the master control valve would remain ON during cycling through each valve (subjected to VALVE_RESET_TIME) as I am using it to control a chemical feed pump to prevent hydrogen proxide (30%) from entering my irrigation system.

                                      Awesome job and I am very pleased with your design.
                                      The only problem I had when building the controller was getting the LCD to communicate.
                                      I added this comment to my program under Instructions.

                                      • If your LCD is unresponsive, download sketch http://forum.arduino.cc/index.php?topic=128635.0 then check serial monitor for LCD address. Insert your address below.
                                      1 Reply Last reply
                                      1
                                      • BulldogLowellB BulldogLowell

                                        If you are worried about Program Space you can turn off Serial debug to rid yourself of a bunch of overhead in the sketch. I am not using String class so there is PLENTY of RAM and I've been using this for a while with no stack corruption issues:

                                        #define DEBUG_ON   // comment out to surpress serial monitor output
                                        

                                        if you propose to turn ON the master valve when each valve is cycled on, then I believe all you need to do is add that valve to the bitmask (logical OR) each time you updateRelays().

                                        void updateRelays(int value)
                                        {
                                          if(value)
                                          {
                                            value |= 0b0000000010000000;  // master is the eighth relay, there are 7 controlled in this example (active HIGH in this example)
                                          }
                                          digitalWrite(latchPin, LOW);
                                          shiftOut(dataPin, clockPin, MSBFIRST, highByte(value));
                                          shiftOut(dataPin, clockPin, MSBFIRST, lowByte(value));
                                          digitalWrite(latchPin, HIGH);
                                        }
                                        

                                        not tested

                                        fusion_manF Offline
                                        fusion_manF Offline
                                        fusion_man
                                        wrote on last edited by
                                        #117

                                        @BulldogLowell

                                        I ended up going a different approach. I modified the program so I could use Arduino digital pin6 as an output powering my master valve relay. I then added digitalWrite (masterValvePin, HIGH) where you have updateRelays(BITSHIFT_VALVE_NUMBER) to turn ON the valve. To turn off the valve I added a delay then digitalWrite (masterValvePin, LOW) to if (state == STAND_BY_ALL_OFF). This has tested perfectly for my situation.
                                        The only thing missing from the Controller is the ability to add the RainBird rain sensor to the board. I think the way of achieving this is an input to my Vera controller.

                                        BulldogLowellB 1 Reply Last reply
                                        0
                                        • fusion_manF fusion_man

                                          @BulldogLowell

                                          I ended up going a different approach. I modified the program so I could use Arduino digital pin6 as an output powering my master valve relay. I then added digitalWrite (masterValvePin, HIGH) where you have updateRelays(BITSHIFT_VALVE_NUMBER) to turn ON the valve. To turn off the valve I added a delay then digitalWrite (masterValvePin, LOW) to if (state == STAND_BY_ALL_OFF). This has tested perfectly for my situation.
                                          The only thing missing from the Controller is the ability to add the RainBird rain sensor to the board. I think the way of achieving this is an input to my Vera controller.

                                          BulldogLowellB Offline
                                          BulldogLowellB Offline
                                          BulldogLowell
                                          Contest Winner
                                          wrote on last edited by
                                          #118

                                          @fusion_man

                                          maybe we can add a rain sensor this season. It is a good idea to include it.

                                          fusion_manF 1 Reply Last reply
                                          0
                                          Reply
                                          • Reply as topic
                                          Log in to reply
                                          • Oldest to Newest
                                          • Newest to Oldest
                                          • Most Votes


                                          22

                                          Online

                                          11.7k

                                          Users

                                          11.2k

                                          Topics

                                          113.1k

                                          Posts


                                          Copyright 2025 TBD   |   Forum Guidelines   |   Privacy Policy   |   Terms of Service
                                          • Login

                                          • Don't have an account? Register

                                          • Login or register to search.
                                          • First post
                                            Last post
                                          0
                                          • MySensors
                                          • OpenHardware.io
                                          • Categories
                                          • Recent
                                          • Tags
                                          • Popular