Domotiocz + Rain gauge
-
@sundberg84 , very nice. I would say.. I want that as well ;-)
any suggestions for a shopping and modification list?
As I don't have a 3D printer to print the thing myself. -
@sundberg84 Thanx for your fast reply. So what happens when the float resets to 0?
@TheoL - Just to add what we discussed in chat for future questions - If float would hit the maximum value (which is hugh so lets hope its not a problem) im not sure what will happen...
-
@TheoL - Just to add what we discussed in chat for future questions - If float would hit the maximum value (which is hugh so lets hope its not a problem) im not sure what will happen...
@sundberg84 It's also not a concern of the MySensors node. This should be handled by Domoticz. I really like your sketch, it works like a charm. I modified it to my needs so that I can run the node without the sleep. Still need to think of an hourly heart beat. But almost there.
-
@sundberg84 It's also not a concern of the MySensors node. This should be handled by Domoticz. I really like your sketch, it works like a charm. I modified it to my needs so that I can run the node without the sleep. Still need to think of an hourly heart beat. But almost there.
@TheoL - If you modify the sketch with a heartbeat() please post it :) Im interested as well!
-
@AWI do you happen to know if the pulse counter in Domoticz is a 1mm pulse counter? Or is it a real tip pulse counter? Right know where checking whenever the rain fall exceeds 1mm and send a pulse ++ in that case. Meaning we miss some pulse counts when we reset the node.
-
@AWI do you happen to know if the pulse counter in Domoticz is a 1mm pulse counter? Or is it a real tip pulse counter? Right know where checking whenever the rain fall exceeds 1mm and send a pulse ++ in that case. Meaning we miss some pulse counts when we reset the node.
-
@TheoL My rain meter counts in 1 mm resolution but I am sending actual total (in mm) from the start of sensor and keep totals in EEPROM.
@AWI (Glad that your back, hope you're doing allright) So, if I understand your setup correctly you don't send the pulse count to Domoticz? I kind of like it, because that way I can reset the rain sensor many times and still keep the rain fall log in sync, without using the EPROM.
And my rain sensor did reset a couple of times. I had to put a diode (Dutch name is blus diode) between the two wires coming out from the rain gauge to prevent this.
-
@AWI (Glad that your back, hope you're doing allright) So, if I understand your setup correctly you don't send the pulse count to Domoticz? I kind of like it, because that way I can reset the rain sensor many times and still keep the rain fall log in sync, without using the EPROM.
And my rain sensor did reset a couple of times. I had to put a diode (Dutch name is blus diode) between the two wires coming out from the rain gauge to prevent this.
@TheoL (i'm fine, thank you) That is what i'm doing. The only thing what I need to do after a reset is delete the miscalculation in Domoticz (easy). My sensor (oregon) uses a 'reed' switch (no induction). I MySensoriz'ed it without losing the original circuitry and function. (so in parallel).
-
@TheoL (i'm fine, thank you) That is what i'm doing. The only thing what I need to do after a reset is delete the miscalculation in Domoticz (easy). My sensor (oregon) uses a 'reed' switch (no induction). I MySensoriz'ed it without losing the original circuitry and function. (so in parallel).
@AWI A lesson learned a couple of month ago. When using an induction reed switch (some of them have a coil around the glass) always add a reversed diode. Otherwise the polarity of the reed switch is being turned for just a millisecond which is enough to cause the arduino to reset ;-). I'm still learning a lot about electronics.
At the moment the diode seems to work. No Arduino resetting for the last couple of hours.
Regarding to the pulse counter is seems to work perfectly. That way I don't need to store any values on the EPROM, which is something I prefer not to do. I just query the current pulse count from Domoticz when the sensors boots. Sending the total amount of rain is as easy as pulse count * bucket size. Not real rocket science.
-
@TheoL - If you modify the sketch with a heartbeat() please post it :) Im interested as well!
@sundberg84 Here's the first version of the sketch. Note that I don't use the sleep. My main goal for creating my own outside weather station is to get rid of the batteries. Because they always same to stop working whenever I'm not at home.
/* Arduino Tipping Bucket Rain Gauge, SI7021 Temperature + Humidity sensor Created October 2nd 2016 Author by Theo This node uses a tipping bucket rain gauge for measuring rain fall. And a si7021 Temperature and Humidity sensor. The logic in this sketch might be specific for Domoticz, because of the Pulse counter. Based upon sketches created by @BulldogLowell / @PeteWill, @sundber84 for free public use Hardware used: Arduino Pro Mini 3.3V buck converter nrf24L01+ radio 100 uf capacitor 2 10K resistors (for i2c) 1N007 diode MI-SOL Rain Guage SI7021 sensor Version history: 02-10-2016 Initial version */ /** Configure MySensors */ // Enable debug prints // #define MY_DEBUG // Enable and select radio type attached #define MY_RADIO_NRF24 /* Include libraries used by the sketch */ #include "ThresholdUtil.h" #include <math.h> #include <Time.h> #include <SI7021.h> #include <MySensors.h> /** Define constants used by sketch */ #define BUCKET_PIN 3 // The Arduino pin to which the bucket is attached. We need an interrupt pin (2 or 3 on the Uno and the Pro Mini) #define SKETCH_INFO "Outside weather" // The name of the sketch as presented to the gateway #define SKETCH_VERSION "1.0" // The version of the sketch as presented to the gateway #define CHILD_ID_HUM 2 // The child id of the humidity sensor #define CHILD_ID_TEMP 1 // The child id of the temperature sensor #define CHILD_ID_RAIN_LOG 4 // The child id of the rain gauge #define MS_WAIT 100 // short delay used to give the NRF24L01+ antenna some time to recover from the last data sending #define bucketSize 0.3 // I've used a MI-SOL Rain Guage which has a bucket size of 0.3 mm /** Declare MySensors messages used by the node */ MyMessage msgHum( CHILD_ID_HUM, V_HUM ); MyMessage msgTemp( CHILD_ID_TEMP, V_TEMP ); MyMessage msgRain( CHILD_ID_RAIN_LOG, V_RAIN ); MyMessage lastCounterMsg( CHILD_ID_RAIN_LOG, V_VAR1 ); /** Declare variables used by the Sketch */ SI7021 humiditySensor; // Declare a SI7021 Temp humidity sensor object float hwRainVolume = 0; // Current rainvolume calculated in hardware. unsigned long hwPulseCounter = 0; // Pulsecount recieved from GW boolean pcReceived = false; // If we have recieved the pulscount from GW or not unsigned long lastTipTime = millis(); // TS of when the bucket tip has been detected for the last time volatile unsigned long wasTippedCounter; // Queue for storing the tipped counter as been set by the interrupt handler. byte lastHour; // Stores the hour used for checking if time needs to be synchronized /** Present all child's to the gateway and query for the pulse count known by the HA controller. */ void presentation() { // Send the sketch version information to the gateway sendSketchInfo( SKETCH_INFO, SKETCH_VERSION ); wait( MS_WAIT ); // Register all sensors to gw (they will be created as child devices) present( CHILD_ID_HUM, S_HUM, "Outside temperature" ); wait( MS_WAIT ); present( CHILD_ID_TEMP, S_TEMP, "Outside humidity" ); wait( MS_WAIT ); present( CHILD_ID_RAIN_LOG, S_RAIN, "Rain fall" ); wait( MS_WAIT ); unsigned long functionTimeout = millis(); while ( pcReceived == false && millis() - functionTimeout < 30000UL ) { request( CHILD_ID_RAIN_LOG, V_VAR1); Serial.println(F("Getting pulse count")); Serial.println(F(".")); wait( 1000 ); } attachInterrupt( digitalPinToInterrupt( BUCKET_PIN ), sensorTipped, LOW ); //FALLING ); // depending on location of the hall effect sensor may need CHANGE } /** Setup of the sketch. It initializes all sensors and queries the gateway for the current time. */ void setup() { Serial.begin( 115200 ); pinMode( BUCKET_PIN, INPUT_PULLUP ); humiditySensor.begin(); registerThresholdedSensor( CHILD_ID_TEMP, 1, TEMPERATURE_SENSOR, 0.5, 30, 20 ); registerThresholdedSensor( CHILD_ID_HUM, 2, HUMIDTY_SENSOR, 2.0, 30, 20 ); unsigned long functionTimeout = millis(); while ( timeStatus() == timeNotSet && millis() - functionTimeout < 30000UL ) { requestTime(); Serial.println(F("Getting Time")); Serial.println(F(".")); wait( 1000 ); } lastHour = hour(); } /** Sends the value of the rain gauge to the Gateway. */ void sendRainVolumeData() { float hwRainVolume = hwPulseCounter * bucketSize; Serial.print( "Tipped " ); Serial.print( hwPulseCounter ); Serial.println( " times." ); Serial.print( "Rain fall is " ); Serial.print( hwRainVolume, 1 ); Serial.println( " mm." ); send( msgRain.set( (float)hwRainVolume, 1 ) ); wait( MS_WAIT ); send( lastCounterMsg.set( hwPulseCounter ) ); wait( MS_WAIT ); } /** Main loop of the node. It checks: - whether the rain gauge bucket has been tipped. - whether the hourly heartbeat needs to be send. - checks all thresholded sensors */ void loop() { if ( wasTippedCounter != hwPulseCounter ) { hwPulseCounter = wasTippedCounter; sendRainVolumeData(); } byte currentHour = hour(); if (currentHour != lastHour) { Serial.println( "Resyncing hour" ); requestTime(); // sync the time every hour wait( MS_WAIT ); lastHour = currentHour; sendRainVolumeData(); // Send heart beat } checkThresholdedSensors( readTHSensor, updatedTHSensorValue ); } /** Interrupt handler for handling bucket tips. */ void sensorTipped() { unsigned long thisTipTime = millis(); if (thisTipTime - lastTipTime > 100UL) { wasTippedCounter++; } lastTipTime = thisTipTime; } /** Threshold util wants to know the current value of a specific sensor. */ void readTHSensor( uint8_t aSensorId, ThreshHoldedSensorType aType, float *value ) { si7021_env data = humiditySensor.getHumidityAndTemperature(); switch ( aSensorId ) { case CHILD_ID_TEMP: *value = data.celsiusHundredths / 100.0; break; case CHILD_ID_HUM: *value = data.humidityPercent; break; } } /** Threshhold util detects that the value of a specific sensor needs to be send to the gateway. */ void updatedTHSensorValue( uint8_t child_id, uint8_t sensor_id, ThreshHoldedSensorType sensor_type, float value ) { switch ( child_id ) { case CHILD_ID_TEMP: Serial.print( "Sending temp " ); Serial.println( value, 1 ); send( msgTemp.set( value, 1 ) ); wait( MS_WAIT ); break; case CHILD_ID_HUM: Serial.print( "Sending Humidity " ); Serial.println( value, 1 ); send( msgHum.set( value, 1 ) ); wait( MS_WAIT ); break; } } /** Call back handler for handling time send by the gateway. */ void receiveTime(unsigned long time) { Serial.println( F("Time received...")); setTime(time); char theTime[6]; sprintf(theTime, "%d:%2d", hour(), minute()); Serial.println(theTime); } /** Callback handler for handling incomming MySensors message. */ void receive(const MyMessage &message) { if ( message.sensor == CHILD_ID_RAIN_LOG && message.type == V_VAR1) { // We only expect pulse count values from the gateway hwPulseCounter = message.getULong(); wasTippedCounter = hwPulseCounter; pcReceived = true; Serial.print("Received last pulse count from gw: "); Serial.println(hwPulseCounter); } }ps. Because the old MySensors API's where removed from the main page, I had to move over to MySensors 2.0. I just uploaded the MySensors 2.0 to my serial gateway and everything seems to work fine. With this I mean all MySensors 1.5 node's are still doing their work. Love it!
EDITED: Added rain rate. But still testing.
-
@AWI last question for today. Do you send the rain rate to domoticz as well? Still figuring out how to do this.
@TheoL - No I dont, and if i remember right its because i sleep the node I cant do the calculations.
-
@TheoL - No I dont, and if i remember right its because i sleep the node I cant do the calculations.
@sundberg84 I've added it. But so far Domoticz doesn't return a value whenever I query a JSON for the sensor. Maybe it does when the clock switches to the next hour.
-
@AWI last question for today. Do you send the rain rate to domoticz as well? Still figuring out how to do this.
-
-
@flopp Thank you. What do you mean by sending data correctly? Do you have an example sketch?
@TheoL said:
@flopp Thank you. What do you mean by sending data correctly? Do you have an example sketch?
Not correctly, I wrote depending.
If you send data every 2 hours and ot every time the buck has tiped the rate will not be correct. Lets say you send/report every 2 hour, you report 10 mm, that means you have "collect" 10 mm for 2 hours. Maybe the hour was not raining, then the rate will show you 10mm/h, sorry if I confusing you.
What I mean is that you should send/report directly when the buck has tiped then the rate in DZ will be correct rate/h.
my sketch
#include <SPI.h> #include <MySensor.h> // Running this in Domoticz stable version 2.5 will not work - upgrade to beta. #define DIGITAL_INPUT_SENSOR 3 // The reed switch you attached. (Only 2 and 3 generates interrupt!) #define INTERRUPT DIGITAL_INPUT_SENSOR-2 // Usually the interrupt = pin -2 (on uno/nano anyway) #define CHILD_ID 1 // Id of the sensor child #define BATT_CHILD 2 #define NODE_ID AUTO // or AUTO to let controller assign #define SKETCH_NAME "Rain Gauge" // Change to a fancy name you like #define SKETCH_VERSION "1.8" // Your version unsigned long SLEEP_TIME = 180*60000; // Sleep time (in milliseconds). //unsigned long SLEEP_TIME = 20000; // use this instead for debug float hwRainVolume = 0; // Current rainvolume calculated in hardware. int hwPulseCounter = 0; // Pulsecount recieved from GW float fullCounter = 0; // Counts when to send counter float bucketSize = 0.5; // Bucketsize mm, needs to be 1, 0.5, 0.25, 0.2 or 0.1 boolean pcReceived = false; // If we have recieved the pulscount from GW or not boolean reedState; // Current state the reedswitch is in boolean oldReedState; // Old state (last state) of the reedswitch unsigned long lastSend =0; // Time we last tried to fetch counter. MySensor gw; MyMessage volumeMsg(CHILD_ID,V_RAIN); MyMessage lastCounterMsg(CHILD_ID,V_VAR1); MyMessage battMsg(BATT_CHILD, V_VOLTAGE); //========================= // BATTERY VOLTAGE DIVIDER SETUP // 1M, 470K divider across battery and using internal ADC ref of 1.1V // Sense point is bypassed with 0.1 uF cap to reduce noise at that point // ((1e6+470e3)/470e3)*1.1 = Vmax = 3.44 Volts // 3.44/1023 = Volts per bit = 0.003363075 /* #define VBAT_PER_BITS 0.003363075 #define VMIN 1.9 // Vmin (radio Min Volt)=1.9V (564v) #define VMAX 3.0 // Vmax = (2xAA bat)=3.0V (892v) int batteryPcnt = 0; // Calc value for battery % int batLoop = 0; // Loop to help calc average int batArray[3]; // Array to store value for average calc. int BATTERY_SENSE_PIN = A0; // select the input pin for the battery sense point //========================= */ long result; float batteryPcnt; float batteryVolt; void setup() { pinMode(6,OUTPUT); digitalWrite(6,HIGH); // use the 1.1 V internal reference //analogReference(INTERNAL); // For battery sensing pinMode(DIGITAL_INPUT_SENSOR, INPUT_PULLUP); // sets the reed sensor digital pin as input reedState = digitalRead(DIGITAL_INPUT_SENSOR); // Read what state the reedswitch is in oldReedState = reedState; // Set startup position for reedswitch delay(500); // Allow time for radio if power used as reset //Begin (Change if you dont want static node_id! (NODE_ID to AUTO) gw.begin(incomingMessage, NODE_ID, false); // Send the Sketch Version Information to the Gateway gw.sendSketchInfo(SKETCH_NAME, SKETCH_VERSION); // Register this device as Rain sensor (will not show in Domoticz until first value arrives) gw.present(CHILD_ID, S_RAIN); gw.present(BATT_CHILD, S_MULTIMETER); Serial.println("Startup completed"); } void loop() { digitalWrite(6,HIGH); delay(100); gw.process(); //gw.begin(incomingMessage, NODE_ID, false); unsigned long currentTime = millis(); //See if we have the counter/pulse from Domoticz - and ask for it if we dont. if (!pcReceived && (currentTime - lastSend > 5000)) { gw.begin(incomingMessage, NODE_ID, false); gw.request(CHILD_ID, V_VAR1); Serial.println("Request pulsecount"); lastSend=currentTime; gw.process(); return; } if (!pcReceived) { return; } //Read if the bucket tipped over reedState = digitalRead(DIGITAL_INPUT_SENSOR); boolean tipped = oldReedState != reedState; //BUCKET TIPS! if (tipped==true) { gw.begin(incomingMessage, NODE_ID, false); Serial.println("The bucket has tipped over..."); oldReedState = reedState; hwRainVolume = hwRainVolume + bucketSize; gw.send(volumeMsg.set((float)hwRainVolume,1)); gw.wait(1000); fullCounter = fullCounter + bucketSize; //Count so we send the counter for every 1mm if(fullCounter >= 1){ hwPulseCounter++; gw.send(lastCounterMsg.set(hwPulseCounter)); gw.wait(1000); fullCounter = 0; } readVcc(); } if (tipped==false) { //No bucket tipped over last sleep-period, check battery then... readVcc(); } lastSend=currentTime; Serial.println("sleep"); digitalWrite(6,LOW); delay(1000); gw.sleep(INTERRUPT, CHANGE, SLEEP_TIME); //The interupt can be CHANGE or FALLING depending on how you wired the hardware. } //Read if we have a incoming message. void incomingMessage(const MyMessage &message) { if (message.type==V_VAR1) { hwPulseCounter = message.getULong(); hwRainVolume = hwPulseCounter; pcReceived = true; Serial.print("Received last pulse count from gw: "); Serial.println(hwPulseCounter); } } /* void batM() //The battery calculations { delay(500); // Battery monitoring reading int sensorValue = analogRead(BATTERY_SENSE_PIN); delay(500); // Calculate the battery in % float Vbat = sensorValue * VBAT_PER_BITS; int batteryPcnt = static_cast<int>(((Vbat-VMIN)/(VMAX-VMIN))*100.); Serial.print("Battery percent: "); Serial.print(batteryPcnt); Serial.println(" %"); // Add it to array so we get an average of 3 (3x20min) batArray[batLoop] = batteryPcnt; if (batLoop > 1) { batteryPcnt = (batArray[0] + batArray[1] + batArray[2]); batteryPcnt = batteryPcnt / 3; if (batteryPcnt > 100) { batteryPcnt=100; } Serial.print("Battery Average (Send): "); Serial.print(batteryPcnt); Serial.println(" %"); gw.sendBatteryLevel(batteryPcnt); batLoop = 0; //Sends 1 per hour as a heartbeat. gw.send(volumeMsg.set((float)hwRainVolume,1)); gw.send(lastCounterMsg.set(hwPulseCounter)); } else { batLoop++; } } */ long readVcc() { Serial.println("readVcc"); // Read 1.1V reference against AVcc ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); delay(2); // Wait for Vref to settle ADCSRA |= _BV(ADSC); // Convert while (bit_is_set(ADCSRA,ADSC)); result = ADCL; result |= ADCH<<8; result = 1126400L / result; // Back-calculate AVcc in mV //return result; gw.begin(incomingMessage, NODE_ID, false); batteryPcnt = (result - 3300) * 0.111111; batteryVolt = result/1000.000; gw.sendBatteryLevel(batteryPcnt); gw.send(battMsg.set(batteryVolt, 3)); /*Serial.print("battery volt:"); Serial.println(batteryVolt, 3); Serial.print("battery percent:"); Serial.println(batteryPcnt); */ } -
@TheoL said:
@flopp Thank you. What do you mean by sending data correctly? Do you have an example sketch?
Not correctly, I wrote depending.
If you send data every 2 hours and ot every time the buck has tiped the rate will not be correct. Lets say you send/report every 2 hour, you report 10 mm, that means you have "collect" 10 mm for 2 hours. Maybe the hour was not raining, then the rate will show you 10mm/h, sorry if I confusing you.
What I mean is that you should send/report directly when the buck has tiped then the rate in DZ will be correct rate/h.
my sketch
#include <SPI.h> #include <MySensor.h> // Running this in Domoticz stable version 2.5 will not work - upgrade to beta. #define DIGITAL_INPUT_SENSOR 3 // The reed switch you attached. (Only 2 and 3 generates interrupt!) #define INTERRUPT DIGITAL_INPUT_SENSOR-2 // Usually the interrupt = pin -2 (on uno/nano anyway) #define CHILD_ID 1 // Id of the sensor child #define BATT_CHILD 2 #define NODE_ID AUTO // or AUTO to let controller assign #define SKETCH_NAME "Rain Gauge" // Change to a fancy name you like #define SKETCH_VERSION "1.8" // Your version unsigned long SLEEP_TIME = 180*60000; // Sleep time (in milliseconds). //unsigned long SLEEP_TIME = 20000; // use this instead for debug float hwRainVolume = 0; // Current rainvolume calculated in hardware. int hwPulseCounter = 0; // Pulsecount recieved from GW float fullCounter = 0; // Counts when to send counter float bucketSize = 0.5; // Bucketsize mm, needs to be 1, 0.5, 0.25, 0.2 or 0.1 boolean pcReceived = false; // If we have recieved the pulscount from GW or not boolean reedState; // Current state the reedswitch is in boolean oldReedState; // Old state (last state) of the reedswitch unsigned long lastSend =0; // Time we last tried to fetch counter. MySensor gw; MyMessage volumeMsg(CHILD_ID,V_RAIN); MyMessage lastCounterMsg(CHILD_ID,V_VAR1); MyMessage battMsg(BATT_CHILD, V_VOLTAGE); //========================= // BATTERY VOLTAGE DIVIDER SETUP // 1M, 470K divider across battery and using internal ADC ref of 1.1V // Sense point is bypassed with 0.1 uF cap to reduce noise at that point // ((1e6+470e3)/470e3)*1.1 = Vmax = 3.44 Volts // 3.44/1023 = Volts per bit = 0.003363075 /* #define VBAT_PER_BITS 0.003363075 #define VMIN 1.9 // Vmin (radio Min Volt)=1.9V (564v) #define VMAX 3.0 // Vmax = (2xAA bat)=3.0V (892v) int batteryPcnt = 0; // Calc value for battery % int batLoop = 0; // Loop to help calc average int batArray[3]; // Array to store value for average calc. int BATTERY_SENSE_PIN = A0; // select the input pin for the battery sense point //========================= */ long result; float batteryPcnt; float batteryVolt; void setup() { pinMode(6,OUTPUT); digitalWrite(6,HIGH); // use the 1.1 V internal reference //analogReference(INTERNAL); // For battery sensing pinMode(DIGITAL_INPUT_SENSOR, INPUT_PULLUP); // sets the reed sensor digital pin as input reedState = digitalRead(DIGITAL_INPUT_SENSOR); // Read what state the reedswitch is in oldReedState = reedState; // Set startup position for reedswitch delay(500); // Allow time for radio if power used as reset //Begin (Change if you dont want static node_id! (NODE_ID to AUTO) gw.begin(incomingMessage, NODE_ID, false); // Send the Sketch Version Information to the Gateway gw.sendSketchInfo(SKETCH_NAME, SKETCH_VERSION); // Register this device as Rain sensor (will not show in Domoticz until first value arrives) gw.present(CHILD_ID, S_RAIN); gw.present(BATT_CHILD, S_MULTIMETER); Serial.println("Startup completed"); } void loop() { digitalWrite(6,HIGH); delay(100); gw.process(); //gw.begin(incomingMessage, NODE_ID, false); unsigned long currentTime = millis(); //See if we have the counter/pulse from Domoticz - and ask for it if we dont. if (!pcReceived && (currentTime - lastSend > 5000)) { gw.begin(incomingMessage, NODE_ID, false); gw.request(CHILD_ID, V_VAR1); Serial.println("Request pulsecount"); lastSend=currentTime; gw.process(); return; } if (!pcReceived) { return; } //Read if the bucket tipped over reedState = digitalRead(DIGITAL_INPUT_SENSOR); boolean tipped = oldReedState != reedState; //BUCKET TIPS! if (tipped==true) { gw.begin(incomingMessage, NODE_ID, false); Serial.println("The bucket has tipped over..."); oldReedState = reedState; hwRainVolume = hwRainVolume + bucketSize; gw.send(volumeMsg.set((float)hwRainVolume,1)); gw.wait(1000); fullCounter = fullCounter + bucketSize; //Count so we send the counter for every 1mm if(fullCounter >= 1){ hwPulseCounter++; gw.send(lastCounterMsg.set(hwPulseCounter)); gw.wait(1000); fullCounter = 0; } readVcc(); } if (tipped==false) { //No bucket tipped over last sleep-period, check battery then... readVcc(); } lastSend=currentTime; Serial.println("sleep"); digitalWrite(6,LOW); delay(1000); gw.sleep(INTERRUPT, CHANGE, SLEEP_TIME); //The interupt can be CHANGE or FALLING depending on how you wired the hardware. } //Read if we have a incoming message. void incomingMessage(const MyMessage &message) { if (message.type==V_VAR1) { hwPulseCounter = message.getULong(); hwRainVolume = hwPulseCounter; pcReceived = true; Serial.print("Received last pulse count from gw: "); Serial.println(hwPulseCounter); } } /* void batM() //The battery calculations { delay(500); // Battery monitoring reading int sensorValue = analogRead(BATTERY_SENSE_PIN); delay(500); // Calculate the battery in % float Vbat = sensorValue * VBAT_PER_BITS; int batteryPcnt = static_cast<int>(((Vbat-VMIN)/(VMAX-VMIN))*100.); Serial.print("Battery percent: "); Serial.print(batteryPcnt); Serial.println(" %"); // Add it to array so we get an average of 3 (3x20min) batArray[batLoop] = batteryPcnt; if (batLoop > 1) { batteryPcnt = (batArray[0] + batArray[1] + batArray[2]); batteryPcnt = batteryPcnt / 3; if (batteryPcnt > 100) { batteryPcnt=100; } Serial.print("Battery Average (Send): "); Serial.print(batteryPcnt); Serial.println(" %"); gw.sendBatteryLevel(batteryPcnt); batLoop = 0; //Sends 1 per hour as a heartbeat. gw.send(volumeMsg.set((float)hwRainVolume,1)); gw.send(lastCounterMsg.set(hwPulseCounter)); } else { batLoop++; } } */ long readVcc() { Serial.println("readVcc"); // Read 1.1V reference against AVcc ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); delay(2); // Wait for Vref to settle ADCSRA |= _BV(ADSC); // Convert while (bit_is_set(ADCSRA,ADSC)); result = ADCL; result |= ADCH<<8; result = 1126400L / result; // Back-calculate AVcc in mV //return result; gw.begin(incomingMessage, NODE_ID, false); batteryPcnt = (result - 3300) * 0.111111; batteryVolt = result/1000.000; gw.sendBatteryLevel(batteryPcnt); gw.send(battMsg.set(batteryVolt, 3)); /*Serial.print("battery volt:"); Serial.println(batteryVolt, 3); Serial.print("battery percent:"); Serial.println(batteryPcnt); */ } -
@sundberg84 Using a real pulse counter instead of a 1mm pulse counter seems to work perfectly. Luckily it makes the sketch a bunch easier to implement and read. And there will also be no loss of 0.2 or 0.5 mm rain fall whenever you reset the node while it didn't have a .0 value.
-
@flopp Thank you for the explanation. I think I've got it.
I've added a RAINRATE msg like this
MyMessage rainRateMsg( CHILD_ID_RAIN_LOG, V_RAINRATE );But I don't think domoticz uses it.
@TheoL RAINRATE is implemented according to this page https://github.com/domoticz/domoticz/blob/master/hardware/MySensorsBase.cpp but I don't know how to use it. I know that DZ doesn't work with this example https://www.mysensors.org/build/rain
