Skip to content
  • MySensors
  • OpenHardware.io
  • Categories
  • Recent
  • Tags
  • Popular
Skins
  • Light
  • Brite
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • Default (No Skin)
  • No Skin
Collapse
Brand Logo
  1. Home
  2. General Discussion
  3. Anyone using/tried the E28-2G4M27S 2.4Ghz LoRa SX1280 27dB module?

Anyone using/tried the E28-2G4M27S 2.4Ghz LoRa SX1280 27dB module?

Scheduled Pinned Locked Moved General Discussion
249 Posts 10 Posters 1.3k Views 11 Watching
  • Oldest to Newest
  • Newest to Oldest
  • Most Votes
Reply
  • Reply as topic
Log in to reply
This topic has been deleted. Only users with topic management privileges can see it.
  • L Larson

    @NeverDie said in Anyone using/tried the E28-2G4M27S 2.4Ghz LoRa SX1280 27dB module?:

    Anyhow, if you find out anything more, I'd be interested.

    Eric Bogatin, master and professor of signal integrity, gave this presentation at an Altuim conference. At about 42:00 he talks about 7 Habits of Good Design. This, again, has more to do with PCB design and not radio performance. I have a suspicion that several radio boards I designed failed not because of the transmitter, but because of bad PCB design. I can make a failed transmitter (whip antennae) board work by putting the 433 MHz transmitter on a 7" leash away from the board. Now that is a sign.

    @ejlane - Thanks. I'm just now learning of the EMI/EMC testing required for commercial products and FCC requirements. While that exceeds the requirements and budget for my home projects, I do think that I might employ the pre EMI testing that one can do with a scope and probes. That may drive me back to school to learn scopes!

    E Offline
    E Offline
    ejlane
    wrote on last edited by
    #24

    @Larson As far as I know, it takes special probes for magnetic fields to check for EMI. Never done it myself, but I keep meaning to. :)

    But scopes are well worth it to see what's going on. You can make it a fair ways with just fiddling with the dials and some light watching of YouTube. I used scopes a bit here and there before I ever went to school for engineering. (Though there was no YouTube to learn from at the time. The basics are pretty self-explanatory, and the advanced features are still beyond what I really do sometimes.)

    1 Reply Last reply
    0
    • NeverDieN Offline
      NeverDieN Offline
      NeverDie
      Hero Member
      wrote on last edited by NeverDie
      #25

      Good news. Regarding the SHT45 TH sensor I mentioned in the first post, mouser expects to have it in stock by July 29, 2022: https://www.mouser.com/c/?q=sht45 Quantity 1 price is $4.60. AFAIK, in terms of accuracy and precision and measurable range, it's pretty much state of the art. If anyone knows of anything better, please do post what it would be.

      A bit like the DeLorean in Back to the Future, I figure if you're going to build a TH sensor, might as well do it in style!

      1 Reply Last reply
      0
      • NeverDieN Offline
        NeverDieN Offline
        NeverDie
        Hero Member
        wrote on last edited by NeverDie
        #26

        I've had the board fabricated, and I've verified that the through-holes will correctly line-up with the holes on a 2.54 pitch prototypig board. Also, the landing pads appear to line-up perfectly as well. Therefore, I have removed the "work in progress" tag. The breakout board is done!
        built.jpg

        https://www.openhardware.io/view/8304/EBYTE-E28-2G4M27S-SX-1280-chip-24GHz-LoRa-Breakout-Board

        1 Reply Last reply
        1
        • NeverDieN Offline
          NeverDieN Offline
          NeverDie
          Hero Member
          wrote on last edited by NeverDie
          #27

          I just now noticed that Andreas Spiess did a youtube about the same chip, though different model Ebyte modue:
          https://www.youtube.com/watch?v=JYThKZCflJc

          Small world: it turns out he also made a breakout board for himself in order to test the module. It doesn't look pin compatible with my module, however, as it has only 14 pins on its pinout, whereas mine has 16. Also, not sure whether Andreas posted his breakout board anywhere. I would expect so. He has a github, but it has almost no descriptive material in it other than the titles, so it's hard to know what is truly what.

          Worthy of note: the module he chose is less capable than the one I picked: substantially less potential transmit power, and also, according to Ebyte specs, somewhat inferior receive sensitivity.

          Fortunately, he does post links to the libraries that he used to operate the SX1280 chip, so that's probably a good starting point, or at least a point of comparison.

          To avoid interference he does report having to turn off the wifi on his esp32 that's driving the module, so having an ethernet connection for the gateway probably makes the most sense. The good news is that with LoRa, you should need only one such gateway, and you can probably put it just about anywhere and still have a good, solid RF connection to your nodes. Probably a raspberry pi could serve that purpose for a low effort solution, though I may go for an arduino-ethernet solution because that may turn out to be even easier, and probably without the need for ongoing updates and security maintenance. i.e. it should "just work". Perhaps setting the target IP address with a dipswitch would avoid any future need to revisit the firmware. Also, a raspberry pi's attack surface seems orders of magnitude larger than a more basic, hardware oriented solution.

          Regardless, the next step for me is to wire it up and get it to play ping pong with another node. Then I'll be able to quickly determine whether ambient wi-fi signals in the environment will be a cause for concern or not. I suspect not, but sending thousands/millions of test packets while measuring for packet loss will tell the tale definitively.

          I have one node with a 100uF capacitor (pictured in my preceding post), and another node without, so I'll try to determine whether it makes any practical difference or not. I'm guessing that it were powered by a coincell, it's essential, but if by two AA's in close proximity, probably not (though if the batteries are weak, maybe it would, at the margin, still help).

          P 1 Reply Last reply
          0
          • NeverDieN Offline
            NeverDieN Offline
            NeverDie
            Hero Member
            wrote on last edited by NeverDie
            #28

            Here's what the breadboarded LoRa transmitter node looks like:
            Tx_LoRa.jpg

            It turns out you need an external LED for status purposes, because the typical Pin 13 LED isn't available because it's in use by the SPI interface as a clock pin. The LED blinks every time a packet is transmitted (about once a second). In the picture here, I managed to photograph it at the very moment of blinking after a transmission.

            The wiring pinout is given in the header file of the library example application, so no thinking required. I'm using a generic pro mini with the 5v LDO removed, and I then programmed it using the Arduino IDE as a 3.3v 8Mhz pro mini using the library's example transmitter setup sketch downloaded from: https://github.com/StuartsProjects/SX12XX-LoRa

            1 Reply Last reply
            1
            • NeverDieN Offline
              NeverDieN Offline
              NeverDie
              Hero Member
              wrote on last edited by NeverDie
              #29

              Here's what the breadboarded receiver looks like:
              Rx_LoRa.JPG

              Every time it receives a packet from the transmitter (pictured in the immediately preceding post), it blinks the red LED.

              Simple to assemble. Both transmitter and receiver worked flawlessly the very first time I put it all together. :-)

              Next up: do range testing around the house and run enough packets to determine whether any ever get lost, and, if so, what the rate of loss is. I'll also dial down the transmit power to see how low is still sufficient.

              1 Reply Last reply
              0
              • L Offline
                L Offline
                Larson
                wrote on last edited by
                #30

                @NeverDie - thanks for the prolific work. There is alot to consider here. I reviewd the Andreas Spiess video...wonderful as usual. I'll have lots of questions after I set-up my own station to poke around.

                On your range tests: The tests that I have seen that are most effective are those where the transmitters are always sending. The recievers have packet counting stats to give evidence. And for a topper, the reciever sends an ack that can also meausre packett success. Fun stuff.

                NeverDieN 1 Reply Last reply
                0
                • L Larson

                  @NeverDie - thanks for the prolific work. There is alot to consider here. I reviewd the Andreas Spiess video...wonderful as usual. I'll have lots of questions after I set-up my own station to poke around.

                  On your range tests: The tests that I have seen that are most effective are those where the transmitters are always sending. The recievers have packet counting stats to give evidence. And for a topper, the reciever sends an ack that can also meausre packett success. Fun stuff.

                  NeverDieN Offline
                  NeverDieN Offline
                  NeverDie
                  Hero Member
                  wrote on last edited by NeverDie
                  #31

                  @Larson Yup. It will be fun to see how LoRa performs at 2.4Ghz.:grin:

                  Since LoRa potentially has such long transmission windows (at the extreme, as much as one second), it will be important to keep the transmissions of different nodes from overlapping and for recovering (and avoiding future overlaps) if they do.

                  1 Reply Last reply
                  0
                  • NeverDieN Offline
                    NeverDieN Offline
                    NeverDie
                    Hero Member
                    wrote on last edited by NeverDie
                    #32

                    In case anyone is wondering, the default receiver output using the library's receiver setup example looks like this:

                    17:05:02 Apr 17 2022
                    V1.0
                    
                    104_LoRa_Receiver_Detailed_Setup Starting
                    
                    LoRa Device found
                    
                    SX1280,PACKET_TYPE_LORA,2444999936hz,SF7,BW406250,CR4:5
                    SX1280,PACKET_TYPE_LORA,Preamble_12,Explicit,PayloadL_255,CRC_ON,IQ_NORMAL,LNAgain_HighSensitivity
                    
                    Reg    0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
                    0x900  80 FF 77 41 20 FA BC 13 C1 80 00 00 00 00 00 61 
                    0x910  9C 44 00 00 00 19 00 00 00 19 87 65 43 21 7F FF 
                    0x920  FF FF FF 00 70 37 12 50 D0 80 00 C0 5F D2 8F 0A 
                    0x930  00 C0 00 00 00 24 00 21 28 B0 30 0D 01 51 63 0C 
                    0x940  58 0B 32 0A 16 24 6B 96 00 18 00 00 00 00 00 00 
                    0x950  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
                    0x960  00 00 00 00 00 00 00 00 00 00 FF FF FF FF FF FF 
                    0x970  FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 04 
                    0x980  00 0B 18 70 00 00 00 4C 00 F0 64 00 00 00 00 00 
                    0x990  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
                    0x9A0  00 08 EC B8 9D 8A E6 66 04 00 00 00 00 00 00 00 
                    0x9B0  00 08 EC B8 9D 8A E6 66 04 00 00 00 00 00 00 00 
                    0x9C0  00 16 00 3F E8 01 FF FF FF FF 5E 4D 25 10 55 55 
                    0x9D0  55 55 55 55 55 55 55 55 55 55 55 55 55 00 00 00 
                    0x9E0  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
                    0x9F0  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
                    
                    
                    Receiver ready - RXBUFFER_SIZE 32
                    
                    4s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,1,Errors,0,IRQreg,8012
                    5s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,2,Errors,0,IRQreg,8012
                    6s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,8dB,Length,23,Packets,3,Errors,0,IRQreg,8012
                    7s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,4,Errors,0,IRQreg,8012
                    8s  Hello World 1234567890*,CRC,DAAB,RSSI,-52dBm,SNR,12dB,Length,23,Packets,5,Errors,0,IRQreg,8012
                    9s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,14dB,Length,23,Packets,6,Errors,0,IRQreg,8012
                    10s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,7,Errors,0,IRQreg,8012
                    11s  Hello World 1234567890*,CRC,DAAB,RSSI,-52dBm,SNR,14dB,Length,23,Packets,8,Errors,0,IRQreg,8012
                    12s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,9,Errors,0,IRQreg,8012
                    13s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,10,Errors,0,IRQreg,8012
                    14s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,11,Errors,0,IRQreg,8012
                    15s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,12,Errors,0,IRQreg,8012
                    16s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,13,Errors,0,IRQreg,8012
                    17s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,12dB,Length,23,Packets,14,Errors,0,IRQreg,8012
                    18s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,15,Errors,0,IRQreg,8012
                    19s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,12dB,Length,23,Packets,16,Errors,0,IRQreg,8012
                    20s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,17,Errors,0,IRQreg,8012
                    21s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,18,Errors,0,IRQreg,8012
                    22s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,19,Errors,0,IRQreg,8012
                    24s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,20,Errors,0,IRQreg,8012
                    25s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,21,Errors,0,IRQreg,8012
                    26s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,22,Errors,0,IRQreg,8012
                    27s  Hello World 1234567890*,CRC,DAAB,RSSI,-51dBm,SNR,13dB,Length,23,Packets,23,Errors,0,IRQreg,8012
                    28s  Hello World 1234567890*,CRC,DAAB,RSSI,-52dBm,SNR,11dB,Length,23,Packets,24,Errors,0,IRQreg,8012
                    29s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,13dB,Length,23,Packets,25,Errors,0,IRQreg,8012
                    30s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,13dB,Length,23,Packets,26,Errors,0,IRQreg,8012
                    31s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,12dB,Length,23,Packets,27,Errors,0,IRQreg,8012
                    32s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,28,Errors,0,IRQreg,8012
                    33s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,12dB,Length,23,Packets,29,Errors,0,IRQreg,8012
                    34s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,30,Errors,0,IRQreg,8012
                    35s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,12dB,Length,23,Packets,31,Errors,0,IRQreg,8012
                    36s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,32,Errors,0,IRQreg,8012
                    37s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,3dB,Length,23,Packets,33,Errors,0,IRQreg,8012
                    38s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,14dB,Length,23,Packets,34,Errors,0,IRQreg,8012
                    39s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,35,Errors,0,IRQreg,8012
                    40s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,36,Errors,0,IRQreg,8012
                    41s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,37,Errors,0,IRQreg,8012
                    42s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,38,Errors,0,IRQreg,8012
                    43s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,39,Errors,0,IRQreg,8012
                    44s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,40,Errors,0,IRQreg,8012
                    45s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,41,Errors,0,IRQreg,8012
                    46s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,42,Errors,0,IRQreg,8012
                    47s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,43,Errors,0,IRQreg,8012
                    48s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,11dB,Length,23,Packets,44,Errors,0,IRQreg,8012
                    49s  Hello World 1234567890*,CRC,DAAB,RSSI,-55dBm,SNR,13dB,Length,23,Packets,45,Errors,0,IRQreg,8012
                    50s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,12dB,Length,23,Packets,46,Errors,0,IRQreg,8012
                    52s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,47,Errors,0,IRQreg,8012
                    53s  Hello World 1234567890*,CRC,DAAB,RSSI,-52dBm,SNR,2dB,Length,23,Packets,48,Errors,0,IRQreg,8012
                    54s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,49,Errors,0,IRQreg,8012
                    55s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,50,Errors,0,IRQreg,8012
                    56s  Hello World 1234567890*,CRC,DAAB,RSSI,-55dBm,SNR,14dB,Length,23,Packets,51,Errors,0,IRQreg,8012
                    57s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,52,Errors,0,IRQreg,8012
                    58s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,53,Errors,0,IRQreg,8012
                    59s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,54,Errors,0,IRQreg,8012
                    60s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,55,Errors,0,IRQreg,8012
                    61s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,12dB,Length,23,Packets,56,Errors,0,IRQreg,8012
                    62s  Hello World 1234567890*,CRC,DAAB,RSSI,-55dBm,SNR,14dB,Length,23,Packets,57,Errors,0,IRQreg,8012
                    63s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,58,Errors,0,IRQreg,8012
                    64s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,4dB,Length,23,Packets,59,Errors,0,IRQreg,8012
                    65s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,13dB,Length,23,Packets,60,Errors,0,IRQreg,8012
                    66s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,12dB,Length,23,Packets,61,Errors,0,IRQreg,8012
                    67s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,13dB,Length,23,Packets,62,Errors,0,IRQreg,8012
                    68s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,13dB,Length,23,Packets,63,Errors,0,IRQreg,8012
                    69s  Hello World 1234567890*,CRC,DAAB,RSSI,-54dBm,SNR,13dB,Length,23,Packets,64,Errors,0,IRQreg,8012
                    70s  Hello World 1234567890*,CRC,DAAB,RSSI,-53dBm,SNR,13dB,Length,23,Packets,65,Errors,0,IRQreg,8012
                    71s  Hello World 1234567890*,CRC,DAAB,RSSI,-52dBm,SNR,13dB,Length,23,Packets,66,Errors,0,IRQreg,8012
                    72s  Hello World 1234567890*,CRC,DAAB,RSSI,-49dBm,SNR,13dB,Length,23,Packets,67,Errors,0,IRQreg,8012
                    
                    

                    So, an obvious thing to do would be to send an incrementing count in each transmitted package as a way to detect lost packets.

                    Interesting that it displays the SNR. AFAIK, this is the first chip I've wrong across which offers that up. It might be handy for identifying a clear channel. Or, less elegantly, one could just check to see if, based on time, an expected packet doesn't arrive. The one virtue in that is that it would require no code change at all.

                    1 Reply Last reply
                    1
                    • NeverDieN Offline
                      NeverDieN Offline
                      NeverDie
                      Hero Member
                      wrote on last edited by NeverDie
                      #33

                      If I put it further away, you can see that it does encounter either missing packets with the generic configuration and/or packets that are received but which fail CRC:

                      2374s  Hello World 1234567890*,CRC,DAAB,RSSI,-85dBm,SNR,-2dB,Length,23,Packets,79,Errors,0,IRQreg,8012
                      2375s  Hello World 1234567890*,CRC,DAAB,RSSI,-79dBm,SNR,14dB,Length,23,Packets,80,Errors,0,IRQreg,8012
                      2376s PacketError,RSSI,-77dBm,SNR,5dB,Length,23,Packets,80,Errors,1,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2377s  Hello World 1234567890*,CRC,DAAB,RSSI,-79dBm,SNR,12dB,Length,23,Packets,81,Errors,1,IRQreg,8012
                      2378s PacketError,RSSI,-79dBm,SNR,-9dB,Length,23,Packets,81,Errors,2,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2381s PacketError,RSSI,-79dBm,SNR,12dB,Length,23,Packets,81,Errors,3,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2382s  Hello World 1234567890*,CRC,DAAB,RSSI,-78dBm,SNR,-1dB,Length,23,Packets,82,Errors,3,IRQreg,8012
                      2383s PacketError,RSSI,-83dBm,SNR,12dB,Length,23,Packets,82,Errors,4,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2384s  Hello World 1234567890*,CRC,DAAB,RSSI,-80dBm,SNR,5dB,Length,23,Packets,83,Errors,4,IRQreg,8012
                      2385s PacketError,RSSI,-81dBm,SNR,-10dB,Length,23,Packets,83,Errors,5,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2388s  Hello World 1234567890*,CRC,DAAB,RSSI,-87dBm,SNR,-5dB,Length,23,Packets,84,Errors,5,IRQreg,8012
                      2390s  Hello World 1234567890*,CRC,DAAB,RSSI,-75dBm,SNR,-1dB,Length,23,Packets,85,Errors,5,IRQreg,8012
                      2391s PacketError,RSSI,-78dBm,SNR,2dB,Length,23,Packets,85,Errors,6,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2392s PacketError,RSSI,-73dBm,SNR,1dB,Length,23,Packets,85,Errors,7,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2394s PacketError,RSSI,-76dBm,SNR,9dB,Length,23,Packets,85,Errors,8,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2395s  Hello World 1234567890*,CRC,DAAB,RSSI,-80dBm,SNR,8dB,Length,23,Packets,86,Errors,8,IRQreg,8012
                      2396s PacketError,RSSI,-77dBm,SNR,9dB,Length,23,Packets,86,Errors,9,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2397s  Hello World 1234567890*,CRC,DAAB,RSSI,-78dBm,SNR,10dB,Length,23,Packets,87,Errors,9,IRQreg,8012
                      2398s PacketError,RSSI,-72dBm,SNR,1dB,Length,23,Packets,87,Errors,10,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2399s  Hello World 1234567890*,CRC,DAAB,RSSI,-77dBm,SNR,10dB,Length,23,Packets,88,Errors,10,IRQreg,8012
                      2400s PacketError,RSSI,-79dBm,SNR,0dB,Length,23,Packets,88,Errors,11,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2401s  Hello World 1234567890*,CRC,DAAB,RSSI,-78dBm,SNR,8dB,Length,23,Packets,89,Errors,11,IRQreg,8012
                      2402s  Hello World 1234567890*,CRC,DAAB,RSSI,-77dBm,SNR,13dB,Length,23,Packets,90,Errors,11,IRQreg,8012
                      2404s  Hello World 1234567890*,CRC,DAAB,RSSI,-84dBm,SNR,-9dB,Length,23,Packets,91,Errors,11,IRQreg,8012
                      2405s  Hello World 1234567890*,CRC,DAAB,RSSI,-73dBm,SNR,2dB,Length,23,Packets,92,Errors,11,IRQreg,8012
                      2408s  Hello World 1234567890*,CRC,DAAB,RSSI,-81dBm,SNR,-7dB,Length,23,Packets,93,Errors,11,IRQreg,8012
                      2409s PacketError,RSSI,-71dBm,SNR,-3dB,Length,23,Packets,93,Errors,12,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2410s  Hello World 1234567890*,CRC,DAAB,RSSI,-73dBm,SNR,-1dB,Length,23,Packets,94,Errors,12,IRQreg,8012
                      2411s  Hello World 1234567890*,CRC,DAAB,RSSI,-77dBm,SNR,10dB,Length,23,Packets,95,Errors,12,IRQreg,8012
                      2412s  Hello World 1234567890*,CRC,DAAB,RSSI,-75dBm,SNR,8dB,Length,23,Packets,96,Errors,12,IRQreg,8012
                      2413s  Hello World 1234567890*,CRC,DAAB,RSSI,-77dBm,SNR,11dB,Length,23,Packets,97,Errors,12,IRQreg,8012
                      2414s  Hello World 1234567890*,CRC,DAAB,RSSI,-76dBm,SNR,9dB,Length,23,Packets,98,Errors,12,IRQreg,8012
                      2415s PacketError,RSSI,-76dBm,SNR,12dB,Length,23,Packets,98,Errors,13,IRQreg,8052,IRQ_RX_DONE,IRQ_HEADER_VALID,IRQ_CRC_ERROR,IRQ_PREAMBLE_DETECTED
                      2416s  Hello World 1234567890*,CRC,DAAB,RSSI,-76dBm,SNR,12dB,Length,23,Packets,99,Errors,13,IRQreg,8012
                      2417s  Hello World 1234567890*,CRC,DAAB,RSSI,-77dBm,SNR,13dB,Length,23,Packets,100,Errors,13,IRQreg,8012
                      2418s  Hello World 1234567890*,CRC,DAAB,RSSI,-77dBm,SNR,13dB,Length,23,Packets,101,Errors,13,IRQreg,8012
                      
                      

                      I'll have to take a closer look at the transmitter settings to see how they might be improved. My guess is that out-of-the-box, all the settings are turned way down for when people are setting up their first nodes. As pictured in the Andreas Spiess video, there is a LoRa calculator which helps with configuration and which can compute the corresponding link budget.

                      Also, I'm guessing that the trace antenna is directional, so maybe that's partly why Andreas switched to an external antenna. I think Adreas is a good youtuber with interesting content, but there's no denying that he glosses over quite a lot, perhaps to keep his audience's interest by just hitting the highlights.

                      Also, the SNR is all over the map,, so maybe interference really is a factor that needs to be considered, even with LoRa. We shall see. Anyway, that's why I'm testing using cheap breadboard prototypes before going all-in. If there's bad news, I'd rather find it early than late!

                      There could be all manner of reasons for packet failures with the generic settings, including some which are not deal-killers in themselves: use of the breadboard itself, the long wires on the breadboard, possible noise from the power supply I'm currently using, noise from the computer that's connected to it for reading the text output, etc. Perhaps the Ebyte modules themselves are defective? That would explain the deep discount at which I acquired them. Who knows. So, I'll do as Andreas did, which is go for the highest possible link budget. If I'm still getting errors after that, then surely it's some other factor than the SX1280 chip itself that's causing the problem.

                      1 Reply Last reply
                      1
                      • NeverDieN Offline
                        NeverDieN Offline
                        NeverDie
                        Hero Member
                        wrote on last edited by NeverDie
                        #34

                        Reporting back: it turns out that the trace antennas are highly directional, and changing the orientation on just one of them can remove 20 to 30dBa from the link budget, which is significant. I'm not sure why that is, as ESP8266's have a similar design and yet don't seem to be as sensitive to orientation. Therefore, putting an omni directiona antenna on at least the receiving node would seem to make a lot of sense.

                        Furthermore, the default settings used by the library appear to yield a link budget of just 123dB:
                        fresh.png
                        which is good for a meh transceiver, but not especially awesome for a LoRa transceiver. With such a meh link budget, it's easy to see how a poorly orientated trace antenna could severely impair the packet error rate.

                        However, by increasing the spreading factor to 12 and narrowing the bandwidth to 200khz, it's possible to add roughly another 20dB to the link budget:
                        juiced.png
                        However, a big downside to this approach is that the transmission time incrases to nearly 1 second, which is a considerable energy drain. Also, the calculator only allows a max transmission power of 12.5dBm, which is well become the module;s advertised maximum transmit power. So,it has me wondering now whether some other register or pin needs to be touched in order to arrive at maximum transmission power. Presumably the SX1280 chip itself has a maximum transmit power of 12.5dBm, and further power would come from activating a power-amplifier on the module, similar to the way the RFM69 module works. However, looking at the manual, this is not the case. Rather, it appears that both the PA and the LNA are permanently activated, and it recommends setting the output power of the SX1280 to 0dBm, at which time the effective output power is 27dBm.

                        So, I do that, and increase the spreading factor to 12, and decrease the bandwidth to 203kHz, but the overall performance is still lackluster. That the power output doesn't seem to be obviously easy to adjust is a disappointment. Overall performance falls far below what the 400Mhz AI-Thinker module can achieve, and those modules are very inexpensive (around $1-2 each).

                        So.... I'm disappointed. They perform far worse than even the el cheapo NRF24L01 modules that are outfitted with PA + LNA, which operate in the same 2.4Ghz band. This should not be! I'll try them next with some 2.4Ghz pigtail dipole antennas and see whether or not that yields significant improvement, even though it undermines the economics of choosing these modules in the first place. If that also fails, then I'm not sure it's worth the time, money, and effort to troubleshoot it further, especially since Andreas Spiess also wasn't sanguine about his different model 2.4Ghz Ebyte LoRa module either.

                        The nice thing about the Ai-Thinker LoRa modules is that they very easily accomodate a wire whip antenna (which are super cheap), whereas these Ebyte modules rely on either the trace antenna (which I now know to be problematic because of its apparent directional sensitivity) or on an IPEX connector, which increases the BOM's antenna price.

                        [Edit: I've changed out the power supplies for battery power. No change. I've removed the receiver from the PC, and no change either. Therefore, it either is the antenna, the breadboard wiring, the Ebyte module itself which is at fault, or else interference in the 2.4Ghz band is too much for these LoRa modules to handle (which would be weird, because 2.4Ghz Wi-Fi seems to work well enough, so go figure). I should receive some IPEX antennas this Thursday to try out, and if that doesn't solve it, then I'm going to build something equivalent with RA-01SH 915Mhz LoRa modules by AI-Thinker and see if that breadboard setup is dramatically better or not. Those modules cost around $3 each on Aliexpress ].

                        mfalkviddM 1 Reply Last reply
                        0
                        • NeverDieN NeverDie

                          Reporting back: it turns out that the trace antennas are highly directional, and changing the orientation on just one of them can remove 20 to 30dBa from the link budget, which is significant. I'm not sure why that is, as ESP8266's have a similar design and yet don't seem to be as sensitive to orientation. Therefore, putting an omni directiona antenna on at least the receiving node would seem to make a lot of sense.

                          Furthermore, the default settings used by the library appear to yield a link budget of just 123dB:
                          fresh.png
                          which is good for a meh transceiver, but not especially awesome for a LoRa transceiver. With such a meh link budget, it's easy to see how a poorly orientated trace antenna could severely impair the packet error rate.

                          However, by increasing the spreading factor to 12 and narrowing the bandwidth to 200khz, it's possible to add roughly another 20dB to the link budget:
                          juiced.png
                          However, a big downside to this approach is that the transmission time incrases to nearly 1 second, which is a considerable energy drain. Also, the calculator only allows a max transmission power of 12.5dBm, which is well become the module;s advertised maximum transmit power. So,it has me wondering now whether some other register or pin needs to be touched in order to arrive at maximum transmission power. Presumably the SX1280 chip itself has a maximum transmit power of 12.5dBm, and further power would come from activating a power-amplifier on the module, similar to the way the RFM69 module works. However, looking at the manual, this is not the case. Rather, it appears that both the PA and the LNA are permanently activated, and it recommends setting the output power of the SX1280 to 0dBm, at which time the effective output power is 27dBm.

                          So, I do that, and increase the spreading factor to 12, and decrease the bandwidth to 203kHz, but the overall performance is still lackluster. That the power output doesn't seem to be obviously easy to adjust is a disappointment. Overall performance falls far below what the 400Mhz AI-Thinker module can achieve, and those modules are very inexpensive (around $1-2 each).

                          So.... I'm disappointed. They perform far worse than even the el cheapo NRF24L01 modules that are outfitted with PA + LNA, which operate in the same 2.4Ghz band. This should not be! I'll try them next with some 2.4Ghz pigtail dipole antennas and see whether or not that yields significant improvement, even though it undermines the economics of choosing these modules in the first place. If that also fails, then I'm not sure it's worth the time, money, and effort to troubleshoot it further, especially since Andreas Spiess also wasn't sanguine about his different model 2.4Ghz Ebyte LoRa module either.

                          The nice thing about the Ai-Thinker LoRa modules is that they very easily accomodate a wire whip antenna (which are super cheap), whereas these Ebyte modules rely on either the trace antenna (which I now know to be problematic because of its apparent directional sensitivity) or on an IPEX connector, which increases the BOM's antenna price.

                          [Edit: I've changed out the power supplies for battery power. No change. I've removed the receiver from the PC, and no change either. Therefore, it either is the antenna, the breadboard wiring, the Ebyte module itself which is at fault, or else interference in the 2.4Ghz band is too much for these LoRa modules to handle (which would be weird, because 2.4Ghz Wi-Fi seems to work well enough, so go figure). I should receive some IPEX antennas this Thursday to try out, and if that doesn't solve it, then I'm going to build something equivalent with RA-01SH 915Mhz LoRa modules by AI-Thinker and see if that breadboard setup is dramatically better or not. Those modules cost around $3 each on Aliexpress ].

                          mfalkviddM Offline
                          mfalkviddM Offline
                          mfalkvidd
                          Mod
                          wrote on last edited by
                          #35

                          @NeverDie in addition to the energy drain, the module would be transmitting for longer than the 400ms FCC dwell time limit.

                          NeverDieN 1 Reply Last reply
                          1
                          • mfalkviddM mfalkvidd

                            @NeverDie in addition to the energy drain, the module would be transmitting for longer than the 400ms FCC dwell time limit.

                            NeverDieN Offline
                            NeverDieN Offline
                            NeverDie
                            Hero Member
                            wrote on last edited by NeverDie
                            #36

                            @mfalkvidd Good catch! I'll take your word for it. Thank you!

                            Reporting back: I found a critical error. The library defaults to leaving the TX_EN and RX_EN pins disconnected. However, this module has a PA and LNA, so it is relevant to it. Since my first attempt merely followed the wiring instructions in the library, I had failed to enable these pins. Now that I have, it's a big improvement.

                            S 1 Reply Last reply
                            1
                            • NeverDieN Offline
                              NeverDieN Offline
                              NeverDie
                              Hero Member
                              wrote on last edited by NeverDie
                              #37

                              Thanks to feedback from @mfalkvidd, I've constructed this as the new target:
                              faster.JPG

                              The directional sensitivity of the trace antenna is still a problem, so it'll have to wait until this Thursday, when the dipole antenna drives, to see whether the latest revision will be good enough or not.

                              mfalkviddM 1 Reply Last reply
                              1
                              • NeverDieN NeverDie

                                Thanks to feedback from @mfalkvidd, I've constructed this as the new target:
                                faster.JPG

                                The directional sensitivity of the trace antenna is still a problem, so it'll have to wait until this Thursday, when the dipole antenna drives, to see whether the latest revision will be good enough or not.

                                mfalkviddM Offline
                                mfalkviddM Offline
                                mfalkvidd
                                Mod
                                wrote on last edited by
                                #38

                                @NeverDie I am unable to find a better FCC reference than https://lowpowerlab.com/forum/rf-range-antennas-rfm69-library/fcc-rules-for-frequency-hopping/msg16006/?PHPSESSID=6e7efa8daee6de15d09c2b954879be34#msg16006 but that reference says:

                                The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

                                Since the module is now using 1,625 kHz bandwidth, it is again outside FCC rules.

                                1 Reply Last reply
                                2
                                • mfalkviddM Offline
                                  mfalkviddM Offline
                                  mfalkvidd
                                  Mod
                                  wrote on last edited by
                                  #39

                                  https://www.govinfo.gov/content/pkg/CFR-2013-title47-vol1/pdf/CFR-2013-title47-vol1-sec15-247.pdf seems to be a pretty good reference.

                                  NeverDieN 1 Reply Last reply
                                  2
                                  • mfalkviddM mfalkvidd

                                    https://www.govinfo.gov/content/pkg/CFR-2013-title47-vol1/pdf/CFR-2013-title47-vol1-sec15-247.pdf seems to be a pretty good reference.

                                    NeverDieN Offline
                                    NeverDieN Offline
                                    NeverDie
                                    Hero Member
                                    wrote on last edited by NeverDie
                                    #40

                                    @mfalkvidd How about this then?

                                    better.png

                                    I'm spitballing this. If anyone has a better idea, or a correction, please do post!

                                    mfalkviddM 1 Reply Last reply
                                    1
                                    • NeverDieN NeverDie

                                      @mfalkvidd How about this then?

                                      better.png

                                      I'm spitballing this. If anyone has a better idea, or a correction, please do post!

                                      mfalkviddM Offline
                                      mfalkviddM Offline
                                      mfalkvidd
                                      Mod
                                      wrote on last edited by
                                      #41

                                      @NeverDie yes, looks good to me

                                      1 Reply Last reply
                                      2
                                      • NeverDieN Offline
                                        NeverDieN Offline
                                        NeverDie
                                        Hero Member
                                        wrote on last edited by NeverDie
                                        #42

                                        I found an IPEX to SMA adapter, and so I changed the antenna selector to select the soldered on IPEX connector and then borrowed an antenna from an unused wifi base station and connected it to the Ebyte module, like so, just to see if it would work at all.
                                        antenna_selector.JPG

                                        Doing this yielded a big improvement in Link Budget. Doing the same type of conversion on the LoRa transmitter module should make a noticeable difference, though I'm doubtful as to whether it will make enough of an improvement that it will perform as well as my AI-Thinker LoRa modules. Nonetheless, I'll attempt another, different, antenna hookup tomorrow when more antenna parts arrive from Amazon, and after testing it, I'll endeavor to reach a final conclusion.

                                        Chasing down all these loose ends has been tedious, so if anyone finds this blog useful, please leave a thumbs-up to this posting. so that I know I'm not wasting my time writing it all down. At the moment I'm liking my AI-Thinker LoRa modules better: they have much better range and without all this fanfare they seem to "just work" straight out of the box.

                                        1 Reply Last reply
                                        3
                                        • NeverDieN Offline
                                          NeverDieN Offline
                                          NeverDie
                                          Hero Member
                                          wrote on last edited by NeverDie
                                          #43

                                          It turns out Ebyte is kind enough to recommend specific antennas to use with this LoRa module:
                                          Ebyte_recommended_antennas_for_2.4Ghz_LoRa.png
                                          Unfortunately, these recommended antenna antenna models do not appear to be stocked by either Amazon or Mouser. Instead, it appears you may have to order them fromAliexpress:
                                          https://www.ebyte.com/en/product-class.html?key=tx2400 So, your best bet would be to order the Ebyte antennas at the same time you order your Ebyte LoRa modules. Unfortunately, I didn't, and I'm now getting the distinct impression that ordering suitable antennas from Amazon is a crapshoot, because I've found supposedly different dipole antennas, but with the exact same dimensions, being marketed for both the 915Mhz band and for the 2.4Ghz band. Surely that can't be right?! :face_with_rolling_eyes:

                                          https://www.amazon.com/BETAFPV-Omnidirectional-Receiver-Connector-Receiver/dp/B09B21WBYW/ref=sr_1_3?crid=1I052I5H1UXHX&keywords=915mhz%2Bdipole%2Bantenna&qid=1650497087&sprefix=915mhz%2Bdipole%2Bantenna%2Caps%2C124&sr=8-3&th=1

                                          1 Reply Last reply
                                          0
                                          Reply
                                          • Reply as topic
                                          Log in to reply
                                          • Oldest to Newest
                                          • Newest to Oldest
                                          • Most Votes


                                          19

                                          Online

                                          11.7k

                                          Users

                                          11.2k

                                          Topics

                                          113.1k

                                          Posts


                                          Copyright 2025 TBD   |   Forum Guidelines   |   Privacy Policy   |   Terms of Service
                                          • Login

                                          • Don't have an account? Register

                                          • Login or register to search.
                                          • First post
                                            Last post
                                          0
                                          • MySensors
                                          • OpenHardware.io
                                          • Categories
                                          • Recent
                                          • Tags
                                          • Popular