💬 Sensebender Gateway
-
So I think i have a maybe already solved issue, but I can not get int working...
In Arduino IDE 1.8.1 this is the error during compiling:"Local\Arduino15\packages\arduino\hardware\samd\1.6.12\cores\arduino/Arduino.h:48:17: fatal error: sam.h: No such file or directory"
-
I have the MySensors SAMD boards installed, so Sensbender Gateway is availabe
-
Arduino SAMD boards are also installed
-
I have installed the "M0" boards
-
Running windows 10 so no need for the inf file, is this correct?
what am I missing?
thanks in advance!
-
-
@jeti SAMD board defs 1.6.12 are currently not supported (PR filed) - you need to downgrade to 1.6.11 until the PR is merged.
-
It's has been a long time since I've posted on this forum.Today I received a note form the postal service that a package from a foreign country has arrived at my local postal office. Can't wait until tomorrow, just to see this beauty.
Now I have to find some time to get it running ;-(
-
It's has been a long time since I've posted on this forum.Today I received a note form the postal service that a package from a foreign country has arrived at my local postal office. Can't wait until tomorrow, just to see this beauty.
Now I have to find some time to get it running ;-(
-
Just tried the MQTT gateway sketch and got some strange behaviour.
Seems to pick up one of the nodes, but can't get an ip address or mqtt connection.
Any ideas on what to try?
0;255;3;0;9;MCO:BGN:STP 0;255;3;0;9;MCO:BGN:INIT OK,TSP=1 IP: 0.0.0.0 0;255;3;0;9;Attempting MQTT connection... 0;255;3;0;9;TSF:MSG:READ,113-113-0,s=0,c=1,t=0,pt=7,l=5,sg=0:20.8 0;255;3;0;9;TSF:MSG:READ,113-113-0,s=0,c=1,t=0,pt=7,l=5,sg=0:20.8 IP: 255.255.255.255 0;255;3;0;9;Attempting MQTT connection... IP: 0.0.0.0 0;255;3;0;9;Attempting MQTT connection... IP: 255.255.255.255 0;255;3;0;9;Attempting MQTT connection... IP: 0.0.0.0 0;255;3;0;9;Attempting MQTT connection... IP: 255.255.255.255 0;255;3;0;9;Attempting MQTT connection... IP: 0.0.0.0 -
Just try standard GatewayW5100MQTTClient sketch. It works fine with RFM69HW
On your log you seems to have issue with your IP. Just my log :0;255;3;0;9;MCO:BGN:STP 0;255;3;0;9;MCO:BGN:INIT OK,TSP=1 IP: 192.168.1.47 0;255;3;0;9;Attempting MQTT connection... 0;255;3;0;9;MQTT connected 0;255;3;0;9;Sending message on topic: mygateway1-out/0/255/0/0/18 0;255;3;0;9;TSF:MSG:READ,15-15-255,s=255,c=3,t=7,pt=0,l=0,sg=0: 0;255;3;0;9;TSF:MSG:BC 0;255;3;0;9;TSF:MSG:FPAR REQ,ID=15 0;255;3;0;9;TSF:PNG:SEND,TO=0 0;255;3;0;9;TSF:CKU:OK 0;255;3;0;9;TSF:MSG:GWL OK 0;255;3;0;9;TSF:MSG:SEND,0-0-15-15,s=255,c=3,t=8,pt=1,l=1,sg=0,ft=0,st=OK:0 0;255;3;0;9;TSF:MSG:READ,15-15-0,s=255,c=3,t=24,pt=1,l=1,sg=0:1 0;255;3;0;9;TSF:MSG:PINGED,ID=15,HP=1 0;255;3;0;9;TSF:MSG:SEND,0-0-15-15,s=255,c=3,t=25,pt=1,l=1,sg=0,ft=0,st=OK:1 0;255;3;0;9;TSF:MSG:READ,15-15-0,s=3,c=1,t=16,pt=1,l=1,sg=0:1 0;255;3;0;9;Sending message on topic: mygateway1-out/15/3/1/0/16 -
Just tried the MQTT gateway sketch and got some strange behaviour.
Seems to pick up one of the nodes, but can't get an ip address or mqtt connection.
Any ideas on what to try?
0;255;3;0;9;MCO:BGN:STP 0;255;3;0;9;MCO:BGN:INIT OK,TSP=1 IP: 0.0.0.0 0;255;3;0;9;Attempting MQTT connection... 0;255;3;0;9;TSF:MSG:READ,113-113-0,s=0,c=1,t=0,pt=7,l=5,sg=0:20.8 0;255;3;0;9;TSF:MSG:READ,113-113-0,s=0,c=1,t=0,pt=7,l=5,sg=0:20.8 IP: 255.255.255.255 0;255;3;0;9;Attempting MQTT connection... IP: 0.0.0.0 0;255;3;0;9;Attempting MQTT connection... IP: 255.255.255.255 0;255;3;0;9;Attempting MQTT connection... IP: 0.0.0.0 0;255;3;0;9;Attempting MQTT connection... IP: 255.255.255.255 0;255;3;0;9;Attempting MQTT connection... IP: 0.0.0.0@tmn103 said in 💬 Sensebender Gateway:
Just tried the MQTT gateway sketch and got some strange behaviour.
Seems to pick up one of the nodes, but can't get an ip address or mqtt connection.
Any ideas on what to try?
IP: 255.255.255.255 0;255;3;0;9;Attempting MQTT connection... IP: 0.0.0.0I would triple-check the IP addresses that you are using...
-
i have uploaded this securitypersonalizer.ino sketch:
/* * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2015 Sensnology AB * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* */ /** * @ingroup MySigninggrp * @{ * @file SecurityPersonalizer.ino * @brief Security personalization sketch * * REVISION HISTORY * - See git log (git log libraries/MySensors/examples/SecurityPersonalizer/SecurityPersonalizer.ino) */ /** * @example SecurityPersonalizer.ino * This sketch will personalize either none-volatile memory or ATSHA204A for security functions * available in the MySensors library. * * For ATSHA204A: * It will write factory default settings to the configuration zone * and then lock it.<br> * It will then either<br> * -# Generate a random value to use as a key which will be stored in * slot 0. The key is printed on UART (115200) in clear text for the user to be * able to use it as a user-supplied key in other personalization executions * where the same key is needed. * -# Use a user-supplied value to use as a key which will be stored in * slot 0. * Finally it will lock the data zone. * * By default, no locking is performed. User have to manually enable the flags that * turn on the locking. Furthermore, user have to send a SPACE character on serial * console when prompted to do any locking. On boards that does not provide UART * input it is possible to configure the sketch to skip this confirmation. * Default settings use ATSHA204A on @ref MY_SIGNING_ATSHA204_PIN. * * For Soft signing: * It will<br> * -# Generate a random value to use as a key which will be stored in EEPROM. * The key is printed on UART (115200) in clear text for the user to be ablle to * use it as a user-supplied key in other personalization executions where the same * key is needed. * -# Use a user-supplied value to use as a key which will be stored in EEPROM. * -# Generate a random value to use as a serial number which will be stored in EEPROM. * The serial number is printed on UART (115200) in clear text for the user to be ablle to * use it as a user-supplied serial number in other personalization executions where the * serial is needed (typically for a whitelist). * -# Use a user-supplied value to use as a serial which will be stored in EEPROM. * * For Encryption support: * -# Generate a random value to use as a AES key which will be stored in EEPROM. * The AES key is printed on UART (115200) in clear text for the user to be ablle to * use it as a user-supplied AES key in other personalization executions where the * AES key is needed (typically for RF encryption). * -# Use a user-supplied value to use as a AES key which will be stored in EEPROM. * * Personalizing EEPROM or ATSHA204A still require the appropriate configuration of the * library to actually have an effect. There is no problem personalizing EEPROM and * ATSHA204A at the same time. There is however a security risk with using the same * data for EEPROM and ATSHA204A so it is recommended to use different serial and HMAC * keys on the same device for ATSHA204A vs soft signing settings. * * Details on personalization procedure is given in @ref personalization. */ #include "sha204_library.h" #include "sha204_lib_return_codes.h" #define MY_CORE_ONLY #include <MySensors.h> // Doxygen specific constructs, not included when built normally // This is used to enable disabled macros/definitions to be included in the documentation as well. #if DOXYGEN #define LOCK_CONFIGURATION #define LOCK_DATA #define SKIP_KEY_STORAGE #define USER_KEY #define SKIP_UART_CONFIRMATION #define USE_SOFT_SIGNING #define STORE_SOFT_KEY #define USER_SOFT_KEY #define STORE_SOFT_SERIAL #define USER_SOFT_SERIAL #define STORE_AES_KEY #define USER_AES_KEY #endif /** * @def LOCK_CONFIGURATION * @brief Uncomment this to enable locking the configuration zone. * * It is still possible to change the key, and this also enable random key generation. * @warning BE AWARE THAT THIS PREVENTS ANY FUTURE CONFIGURATION CHANGE TO THE CHIP */ #define LOCK_CONFIGURATION /** * @def LOCK_DATA * @brief Uncomment this to enable locking the data zone. * * It is not required to lock data, key cannot be retrieved anyway, but by locking * data, it can be guaranteed that nobody even with physical access to the chip, * will be able to change the key. * @warning BE AWARE THAT THIS PREVENTS THE KEY TO BE CHANGED */ //#define LOCK_DATA /** * @def SKIP_KEY_STORAGE * @brief Uncomment this to skip key storage (typically once key has been written once) */ #define SKIP_KEY_STORAGE /** * @def USER_KEY * @brief Uncomment this to skip key generation and use @ref user_key_data as key instead. */ //#define USER_KEY /** * @def SKIP_UART_CONFIRMATION * @brief Uncomment this for boards that lack UART * * @b Important<br> No confirmation will be required for locking any zones with this configuration! * Also, key generation is not permitted in this mode as there is no way of presenting the generated key. */ //#define SKIP_UART_CONFIRMATION /** * @def USE_SOFT_SIGNING * @brief Uncomment this to store data to EEPROM instead of ATSHA204A */ //#define USE_SOFT_SIGNING /** * @def STORE_SOFT_KEY * @brief Uncomment this to store soft HMAC key to EEPROM */ //#define STORE_SOFT_KEY /** * @def USER_SOFT_KEY * @brief Uncomment this to skip soft HMAC key generation and use @ref user_soft_key_data as HMAC key instead. */ //#define USER_SOFT_KEY /** * @def STORE_SOFT_SERIAL * @brief Uncomment this to store soft serial to EEPROM */ //#define STORE_SOFT_SERIAL /** * @def USER_SOFT_SERIAL * @brief Uncomment this to skip soft serial generation and use @ref user_soft_serial as serial instead. */ //#define USER_SOFT_SERIAL /** * @def STORE_AES_KEY * @brief Uncomment this to store AES key to EEPROM */ //#define STORE_AES_KEY /** * @def USER_AES_KEY * @brief Uncomment this to skip AES key generation and use @ref user_aes_key as key instead. */ //#define USER_AES_KEY #if defined(SKIP_UART_CONFIRMATION) && !defined(USER_KEY) #error You have to define USER_KEY for boards that does not have UART #endif #ifdef USER_KEY /** @brief The user-defined HMAC key to use for personalization */ #define MY_HMAC_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store in key slot 0 */ const uint8_t user_key_data[32] = {MY_HMAC_KEY}; #endif #ifdef USER_SOFT_KEY /** @brief The user-defined soft HMAC key to use for EEPROM personalization */ #define MY_SOFT_HMAC_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as soft HMAC key in EEPROM */ const uint8_t user_soft_key_data[32] = {MY_SOFT_HMAC_KEY}; #endif #ifdef USER_SOFT_SERIAL /** @brief The user-defined soft serial to use for EEPROM personalization */ #define MY_SOFT_SERIAL 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as soft serial in EEPROM */ const uint8_t user_soft_serial[9] = {MY_SOFT_SERIAL}; #endif #ifdef USER_AES_KEY /** @brief The user-defined AES key to use for EEPROM personalization */ #define MY_AES_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as AES key in EEPROM */ const uint8_t user_aes_key[16] = {MY_AES_KEY}; #endif #ifndef USE_SOFT_SIGNING const int sha204Pin = MY_SIGNING_ATSHA204_PIN; //!< The IO pin to use for ATSHA204A atsha204Class sha204(sha204Pin); #endif /** @brief Print a error notice and halt the execution */ void halt() { Serial.println(F("Halting!")); while(1); } #ifndef USE_SOFT_SIGNING /** * @brief Write default configuration and return CRC of the configuration bits * @returns CRC over the configuration bits */ uint16_t write_config_and_get_crc() { uint16_t crc = 0; uint8_t config_word[4]; uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; bool do_write; // We will set default settings from datasheet on all slots. This means that we can use slot 0 for the key // as that slot will not be readable (key will therefore be secure) and slot 8 for the payload digest // calculationon as that slot can be written in clear text even when the datazone is locked. // Other settings which are not relevant are kept as is. for (int i=0; i < 88; i += 4) { do_write = true; if (i == 20) { config_word[0] = 0x8F; config_word[1] = 0x80; config_word[2] = 0x80; config_word[3] = 0xA1; } else if (i == 24) { config_word[0] = 0x82; config_word[1] = 0xE0; config_word[2] = 0xA3; config_word[3] = 0x60; } else if (i == 28) { config_word[0] = 0x94; config_word[1] = 0x40; config_word[2] = 0xA0; config_word[3] = 0x85; } else if (i == 32) { config_word[0] = 0x86; config_word[1] = 0x40; config_word[2] = 0x87; config_word[3] = 0x07; } else if (i == 36) { config_word[0] = 0x0F; config_word[1] = 0x00; config_word[2] = 0x89; config_word[3] = 0xF2; } else if (i == 40) { config_word[0] = 0x8A; config_word[1] = 0x7A; config_word[2] = 0x0B; config_word[3] = 0x8B; } else if (i == 44) { config_word[0] = 0x0C; config_word[1] = 0x4C; config_word[2] = 0xDD; config_word[3] = 0x4D; } else if (i == 48) { config_word[0] = 0xC2; config_word[1] = 0x42; config_word[2] = 0xAF; config_word[3] = 0x8F; } else if (i == 52 || i == 56 || i == 60 || i == 64) { config_word[0] = 0xFF; config_word[1] = 0x00; config_word[2] = 0xFF; config_word[3] = 0x00; } else if (i == 68 || i == 72 || i == 76 || i == 80) { config_word[0] = 0xFF; config_word[1] = 0xFF; config_word[2] = 0xFF; config_word[3] = 0xFF; } else { // All other configs are untouched ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } // Set config_word to the read data config_word[0] = rx_buffer[SHA204_BUFFER_POS_DATA+0]; config_word[1] = rx_buffer[SHA204_BUFFER_POS_DATA+1]; config_word[2] = rx_buffer[SHA204_BUFFER_POS_DATA+2]; config_word[3] = rx_buffer[SHA204_BUFFER_POS_DATA+3]; do_write = false; } // Update crc with CRC for the current word crc = sha204.calculateAndUpdateCrc(4, config_word, crc); // Write config word if (do_write) { ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_CONFIG, i >> 2, 4, config_word, 0, NULL, 0, NULL, WRITE_COUNT_SHORT, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write config word at address ")); Serial.print(i); Serial.print(F(". Response: ")); Serial.println(ret_code, HEX); halt(); } } } return crc; } /** * @brief Write provided key to slot 0 * @param key The key data to write */ void write_key(uint8_t* key) { uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; // Write key to slot 0 ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_DATA | SHA204_ZONE_COUNT_FLAG, 0, SHA204_ZONE_ACCESS_32, key, 0, NULL, 0, NULL, WRITE_COUNT_LONG, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write key to slot 0. Response: ")); Serial.println(ret_code, HEX); halt(); } } #endif // not USE_SOFT_SIGNING /** @brief Dump current configuration to UART */ void dump_configuration() { uint8_t buffer[32]; #ifndef USE_SOFT_SIGNING Serial.println(F("EEPROM DATA:")); #endif hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); Serial.print(F("SOFT_HMAC_KEY | ")); for (int j=0; j<32; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); Serial.print(F("SOFT_SERIAL | ")); for (int j=0; j<9; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, 16); Serial.print(F("AES_KEY | ")); for (int j=0; j<16; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; Serial.println(F("ATSHA204A DATA:")); for (int i=0; i < 88; i += 4) { ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } if (i == 0x00) { Serial.print(F(" SN[0:1] | SN[2:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x04) { Serial.print(F(" Revnum | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x08) { Serial.print(F(" SN[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x0C) { Serial.print(F(" SN[8] | Reserved13 | I2CEnable | Reserved15 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x10) { Serial.print(F(" I2CAddress | TempOffset | OTPmode | SelectorMode | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x14) { Serial.print(F(" SlotConfig00 | SlotConfig01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x18) { Serial.print(F(" SlotConfig02 | SlotConfig03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x1C) { Serial.print(F(" SlotConfig04 | SlotConfig05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x20) { Serial.print(F(" SlotConfig06 | SlotConfig07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x24) { Serial.print(F(" SlotConfig08 | SlotConfig09 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x28) { Serial.print(F(" SlotConfig0A | SlotConfig0B | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x2C) { Serial.print(F(" SlotConfig0C | SlotConfig0D | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x30) { Serial.print(F(" SlotConfig0E | SlotConfig0F | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x34) { Serial.print(F(" UseFlag00 | UpdateCount00 | UseFlag01 | UpdateCount01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x38) { Serial.print(F(" UseFlag02 | UpdateCount02 | UseFlag03 | UpdateCount03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x3C) { Serial.print(F(" UseFlag04 | UpdateCount04 | UseFlag05 | UpdateCount05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x40) { Serial.print(F(" UseFlag06 | UpdateCount06 | UseFlag07 | UpdateCount07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x44) { Serial.print(F(" LastKeyUse[0:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x48) { Serial.print(F(" LastKeyUse[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x4C) { Serial.print(F(" LastKeyUse[8:B] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x50) { Serial.print(F(" LastKeyUse[C:F] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x54) { Serial.print(F(" UserExtra | Selector | LockValue | LockConfig | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } } #endif // not USE_SOFT_SIGNING } /** @brief Sketch setup code */ void setup() { // Delay startup a bit for serial consoles to catch up unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)500); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; uint8_t lockConfig = 0; uint8_t lockValue = 0; uint16_t crc; (void)crc; #else // initialize pseudo-RNG randomSeed(analogRead(MY_SIGNING_SOFT_RANDOMSEED_PIN)); #endif uint8_t key[32]; (void)key; Serial.begin(115200); hwInit(); Serial.println(F("Personalization sketch for MySensors usage.")); Serial.println(F("-------------------------------------------")); #ifndef USE_SOFT_SIGNING // Wake device before starting operations ret_code = sha204.sha204c_wakeup(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to wake device. Response: ")); Serial.println(ret_code, HEX); halt(); } // Read out lock config bits to determine if locking is possible ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } #endif #ifdef STORE_SOFT_KEY #ifdef USER_SOFT_KEY memcpy(key, user_soft_key_data, 32); Serial.println(F("Using this user supplied soft HMAC key:")); #else // Retrieve random value to use as soft HMAC key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 32; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_KEY Serial.print("#define MY_SOFT_HMAC_KEY "); for (int i=0; i<32; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 31) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); #endif // STORE_SOFT_KEY #ifdef STORE_SOFT_SERIAL #ifdef USER_SOFT_SERIAL memcpy(key, user_soft_serial, 9); Serial.println(F("Using this user supplied soft serial:")); #else // Retrieve random value to use as serial #ifdef USE_SOFT_SIGNING for (int i = 0; i < 9; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft serial:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random serial generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 9); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft serial:")); } else { Serial.println(F("Serial is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_SERIAL Serial.print("#define MY_SOFT_SERIAL "); for (int i=0; i<9; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 8) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); #endif // STORE_SOFT_SERIAL #ifdef STORE_AES_KEY #ifdef USER_AES_KEY memcpy(key, user_aes_key, 16); Serial.println(F("Using this user supplied AES key:")); #else // Retrieve random value to use as key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 16; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This key will be stored in EEPROM as AES key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This key will be stored in EEPROM as AES key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } .... i have cut the rest of code because its to long to post here complete ...but i dont get any output on serial monitor. Do you know whaat is went wrong?
thanks -
i have uploaded this securitypersonalizer.ino sketch:
/* * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2015 Sensnology AB * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* */ /** * @ingroup MySigninggrp * @{ * @file SecurityPersonalizer.ino * @brief Security personalization sketch * * REVISION HISTORY * - See git log (git log libraries/MySensors/examples/SecurityPersonalizer/SecurityPersonalizer.ino) */ /** * @example SecurityPersonalizer.ino * This sketch will personalize either none-volatile memory or ATSHA204A for security functions * available in the MySensors library. * * For ATSHA204A: * It will write factory default settings to the configuration zone * and then lock it.<br> * It will then either<br> * -# Generate a random value to use as a key which will be stored in * slot 0. The key is printed on UART (115200) in clear text for the user to be * able to use it as a user-supplied key in other personalization executions * where the same key is needed. * -# Use a user-supplied value to use as a key which will be stored in * slot 0. * Finally it will lock the data zone. * * By default, no locking is performed. User have to manually enable the flags that * turn on the locking. Furthermore, user have to send a SPACE character on serial * console when prompted to do any locking. On boards that does not provide UART * input it is possible to configure the sketch to skip this confirmation. * Default settings use ATSHA204A on @ref MY_SIGNING_ATSHA204_PIN. * * For Soft signing: * It will<br> * -# Generate a random value to use as a key which will be stored in EEPROM. * The key is printed on UART (115200) in clear text for the user to be ablle to * use it as a user-supplied key in other personalization executions where the same * key is needed. * -# Use a user-supplied value to use as a key which will be stored in EEPROM. * -# Generate a random value to use as a serial number which will be stored in EEPROM. * The serial number is printed on UART (115200) in clear text for the user to be ablle to * use it as a user-supplied serial number in other personalization executions where the * serial is needed (typically for a whitelist). * -# Use a user-supplied value to use as a serial which will be stored in EEPROM. * * For Encryption support: * -# Generate a random value to use as a AES key which will be stored in EEPROM. * The AES key is printed on UART (115200) in clear text for the user to be ablle to * use it as a user-supplied AES key in other personalization executions where the * AES key is needed (typically for RF encryption). * -# Use a user-supplied value to use as a AES key which will be stored in EEPROM. * * Personalizing EEPROM or ATSHA204A still require the appropriate configuration of the * library to actually have an effect. There is no problem personalizing EEPROM and * ATSHA204A at the same time. There is however a security risk with using the same * data for EEPROM and ATSHA204A so it is recommended to use different serial and HMAC * keys on the same device for ATSHA204A vs soft signing settings. * * Details on personalization procedure is given in @ref personalization. */ #include "sha204_library.h" #include "sha204_lib_return_codes.h" #define MY_CORE_ONLY #include <MySensors.h> // Doxygen specific constructs, not included when built normally // This is used to enable disabled macros/definitions to be included in the documentation as well. #if DOXYGEN #define LOCK_CONFIGURATION #define LOCK_DATA #define SKIP_KEY_STORAGE #define USER_KEY #define SKIP_UART_CONFIRMATION #define USE_SOFT_SIGNING #define STORE_SOFT_KEY #define USER_SOFT_KEY #define STORE_SOFT_SERIAL #define USER_SOFT_SERIAL #define STORE_AES_KEY #define USER_AES_KEY #endif /** * @def LOCK_CONFIGURATION * @brief Uncomment this to enable locking the configuration zone. * * It is still possible to change the key, and this also enable random key generation. * @warning BE AWARE THAT THIS PREVENTS ANY FUTURE CONFIGURATION CHANGE TO THE CHIP */ #define LOCK_CONFIGURATION /** * @def LOCK_DATA * @brief Uncomment this to enable locking the data zone. * * It is not required to lock data, key cannot be retrieved anyway, but by locking * data, it can be guaranteed that nobody even with physical access to the chip, * will be able to change the key. * @warning BE AWARE THAT THIS PREVENTS THE KEY TO BE CHANGED */ //#define LOCK_DATA /** * @def SKIP_KEY_STORAGE * @brief Uncomment this to skip key storage (typically once key has been written once) */ #define SKIP_KEY_STORAGE /** * @def USER_KEY * @brief Uncomment this to skip key generation and use @ref user_key_data as key instead. */ //#define USER_KEY /** * @def SKIP_UART_CONFIRMATION * @brief Uncomment this for boards that lack UART * * @b Important<br> No confirmation will be required for locking any zones with this configuration! * Also, key generation is not permitted in this mode as there is no way of presenting the generated key. */ //#define SKIP_UART_CONFIRMATION /** * @def USE_SOFT_SIGNING * @brief Uncomment this to store data to EEPROM instead of ATSHA204A */ //#define USE_SOFT_SIGNING /** * @def STORE_SOFT_KEY * @brief Uncomment this to store soft HMAC key to EEPROM */ //#define STORE_SOFT_KEY /** * @def USER_SOFT_KEY * @brief Uncomment this to skip soft HMAC key generation and use @ref user_soft_key_data as HMAC key instead. */ //#define USER_SOFT_KEY /** * @def STORE_SOFT_SERIAL * @brief Uncomment this to store soft serial to EEPROM */ //#define STORE_SOFT_SERIAL /** * @def USER_SOFT_SERIAL * @brief Uncomment this to skip soft serial generation and use @ref user_soft_serial as serial instead. */ //#define USER_SOFT_SERIAL /** * @def STORE_AES_KEY * @brief Uncomment this to store AES key to EEPROM */ //#define STORE_AES_KEY /** * @def USER_AES_KEY * @brief Uncomment this to skip AES key generation and use @ref user_aes_key as key instead. */ //#define USER_AES_KEY #if defined(SKIP_UART_CONFIRMATION) && !defined(USER_KEY) #error You have to define USER_KEY for boards that does not have UART #endif #ifdef USER_KEY /** @brief The user-defined HMAC key to use for personalization */ #define MY_HMAC_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store in key slot 0 */ const uint8_t user_key_data[32] = {MY_HMAC_KEY}; #endif #ifdef USER_SOFT_KEY /** @brief The user-defined soft HMAC key to use for EEPROM personalization */ #define MY_SOFT_HMAC_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as soft HMAC key in EEPROM */ const uint8_t user_soft_key_data[32] = {MY_SOFT_HMAC_KEY}; #endif #ifdef USER_SOFT_SERIAL /** @brief The user-defined soft serial to use for EEPROM personalization */ #define MY_SOFT_SERIAL 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as soft serial in EEPROM */ const uint8_t user_soft_serial[9] = {MY_SOFT_SERIAL}; #endif #ifdef USER_AES_KEY /** @brief The user-defined AES key to use for EEPROM personalization */ #define MY_AES_KEY 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 /** @brief The data to store as AES key in EEPROM */ const uint8_t user_aes_key[16] = {MY_AES_KEY}; #endif #ifndef USE_SOFT_SIGNING const int sha204Pin = MY_SIGNING_ATSHA204_PIN; //!< The IO pin to use for ATSHA204A atsha204Class sha204(sha204Pin); #endif /** @brief Print a error notice and halt the execution */ void halt() { Serial.println(F("Halting!")); while(1); } #ifndef USE_SOFT_SIGNING /** * @brief Write default configuration and return CRC of the configuration bits * @returns CRC over the configuration bits */ uint16_t write_config_and_get_crc() { uint16_t crc = 0; uint8_t config_word[4]; uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; bool do_write; // We will set default settings from datasheet on all slots. This means that we can use slot 0 for the key // as that slot will not be readable (key will therefore be secure) and slot 8 for the payload digest // calculationon as that slot can be written in clear text even when the datazone is locked. // Other settings which are not relevant are kept as is. for (int i=0; i < 88; i += 4) { do_write = true; if (i == 20) { config_word[0] = 0x8F; config_word[1] = 0x80; config_word[2] = 0x80; config_word[3] = 0xA1; } else if (i == 24) { config_word[0] = 0x82; config_word[1] = 0xE0; config_word[2] = 0xA3; config_word[3] = 0x60; } else if (i == 28) { config_word[0] = 0x94; config_word[1] = 0x40; config_word[2] = 0xA0; config_word[3] = 0x85; } else if (i == 32) { config_word[0] = 0x86; config_word[1] = 0x40; config_word[2] = 0x87; config_word[3] = 0x07; } else if (i == 36) { config_word[0] = 0x0F; config_word[1] = 0x00; config_word[2] = 0x89; config_word[3] = 0xF2; } else if (i == 40) { config_word[0] = 0x8A; config_word[1] = 0x7A; config_word[2] = 0x0B; config_word[3] = 0x8B; } else if (i == 44) { config_word[0] = 0x0C; config_word[1] = 0x4C; config_word[2] = 0xDD; config_word[3] = 0x4D; } else if (i == 48) { config_word[0] = 0xC2; config_word[1] = 0x42; config_word[2] = 0xAF; config_word[3] = 0x8F; } else if (i == 52 || i == 56 || i == 60 || i == 64) { config_word[0] = 0xFF; config_word[1] = 0x00; config_word[2] = 0xFF; config_word[3] = 0x00; } else if (i == 68 || i == 72 || i == 76 || i == 80) { config_word[0] = 0xFF; config_word[1] = 0xFF; config_word[2] = 0xFF; config_word[3] = 0xFF; } else { // All other configs are untouched ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } // Set config_word to the read data config_word[0] = rx_buffer[SHA204_BUFFER_POS_DATA+0]; config_word[1] = rx_buffer[SHA204_BUFFER_POS_DATA+1]; config_word[2] = rx_buffer[SHA204_BUFFER_POS_DATA+2]; config_word[3] = rx_buffer[SHA204_BUFFER_POS_DATA+3]; do_write = false; } // Update crc with CRC for the current word crc = sha204.calculateAndUpdateCrc(4, config_word, crc); // Write config word if (do_write) { ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_CONFIG, i >> 2, 4, config_word, 0, NULL, 0, NULL, WRITE_COUNT_SHORT, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write config word at address ")); Serial.print(i); Serial.print(F(". Response: ")); Serial.println(ret_code, HEX); halt(); } } } return crc; } /** * @brief Write provided key to slot 0 * @param key The key data to write */ void write_key(uint8_t* key) { uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; // Write key to slot 0 ret_code = sha204.sha204m_execute(SHA204_WRITE, SHA204_ZONE_DATA | SHA204_ZONE_COUNT_FLAG, 0, SHA204_ZONE_ACCESS_32, key, 0, NULL, 0, NULL, WRITE_COUNT_LONG, tx_buffer, WRITE_RSP_SIZE, rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to write key to slot 0. Response: ")); Serial.println(ret_code, HEX); halt(); } } #endif // not USE_SOFT_SIGNING /** @brief Dump current configuration to UART */ void dump_configuration() { uint8_t buffer[32]; #ifndef USE_SOFT_SIGNING Serial.println(F("EEPROM DATA:")); #endif hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); Serial.print(F("SOFT_HMAC_KEY | ")); for (int j=0; j<32; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); Serial.print(F("SOFT_SERIAL | ")); for (int j=0; j<9; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); hwReadConfigBlock((void*)buffer, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, 16); Serial.print(F("AES_KEY | ")); for (int j=0; j<16; j++) { if (buffer[j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(buffer[j], HEX); } Serial.println(); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; Serial.println(F("ATSHA204A DATA:")); for (int i=0; i < 88; i += 4) { ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, i); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to read config. Response: ")); Serial.println(ret_code, HEX); halt(); } if (i == 0x00) { Serial.print(F(" SN[0:1] | SN[2:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x04) { Serial.print(F(" Revnum | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x08) { Serial.print(F(" SN[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x0C) { Serial.print(F(" SN[8] | Reserved13 | I2CEnable | Reserved15 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x10) { Serial.print(F(" I2CAddress | TempOffset | OTPmode | SelectorMode | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x14) { Serial.print(F(" SlotConfig00 | SlotConfig01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x18) { Serial.print(F(" SlotConfig02 | SlotConfig03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x1C) { Serial.print(F(" SlotConfig04 | SlotConfig05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x20) { Serial.print(F(" SlotConfig06 | SlotConfig07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x24) { Serial.print(F(" SlotConfig08 | SlotConfig09 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x28) { Serial.print(F(" SlotConfig0A | SlotConfig0B | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x2C) { Serial.print(F(" SlotConfig0C | SlotConfig0D | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x30) { Serial.print(F(" SlotConfig0E | SlotConfig0F | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j == 1) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x34) { Serial.print(F(" UseFlag00 | UpdateCount00 | UseFlag01 | UpdateCount01 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x38) { Serial.print(F(" UseFlag02 | UpdateCount02 | UseFlag03 | UpdateCount03 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x3C) { Serial.print(F(" UseFlag04 | UpdateCount04 | UseFlag05 | UpdateCount05 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x40) { Serial.print(F(" UseFlag06 | UpdateCount06 | UseFlag07 | UpdateCount07 | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } else if (i == 0x44) { Serial.print(F(" LastKeyUse[0:3] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x48) { Serial.print(F(" LastKeyUse[4:7] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x4C) { Serial.print(F(" LastKeyUse[8:B] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x50) { Serial.print(F(" LastKeyUse[C:F] | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); Serial.print(F(" ")); } Serial.println(); } else if (i == 0x54) { Serial.print(F(" UserExtra | Selector | LockValue | LockConfig | ")); for (int j=0; j<4; j++) { if (rx_buffer[SHA204_BUFFER_POS_DATA+j] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[SHA204_BUFFER_POS_DATA+j], HEX); if (j < 3) { Serial.print(F(" | ")); } else { Serial.print(F(" ")); } } Serial.println(); } } #endif // not USE_SOFT_SIGNING } /** @brief Sketch setup code */ void setup() { // Delay startup a bit for serial consoles to catch up unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)500); #ifndef USE_SOFT_SIGNING uint8_t tx_buffer[SHA204_CMD_SIZE_MAX]; uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; uint8_t lockConfig = 0; uint8_t lockValue = 0; uint16_t crc; (void)crc; #else // initialize pseudo-RNG randomSeed(analogRead(MY_SIGNING_SOFT_RANDOMSEED_PIN)); #endif uint8_t key[32]; (void)key; Serial.begin(115200); hwInit(); Serial.println(F("Personalization sketch for MySensors usage.")); Serial.println(F("-------------------------------------------")); #ifndef USE_SOFT_SIGNING // Wake device before starting operations ret_code = sha204.sha204c_wakeup(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to wake device. Response: ")); Serial.println(ret_code, HEX); halt(); } // Read out lock config bits to determine if locking is possible ret_code = sha204.sha204m_read(tx_buffer, rx_buffer, SHA204_ZONE_CONFIG, 0x15<<2); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to determine device lock status. Response: ")); Serial.println(ret_code, HEX); halt(); } else { lockConfig = rx_buffer[SHA204_BUFFER_POS_DATA+3]; lockValue = rx_buffer[SHA204_BUFFER_POS_DATA+2]; } #endif #ifdef STORE_SOFT_KEY #ifdef USER_SOFT_KEY memcpy(key, user_soft_key_data, 32); Serial.println(F("Using this user supplied soft HMAC key:")); #else // Retrieve random value to use as soft HMAC key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 32; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft HMAC key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_KEY Serial.print("#define MY_SOFT_HMAC_KEY "); for (int i=0; i<32; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 31) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS, 32); #endif // STORE_SOFT_KEY #ifdef STORE_SOFT_SERIAL #ifdef USER_SOFT_SERIAL memcpy(key, user_soft_serial, 9); Serial.println(F("Using this user supplied soft serial:")); #else // Retrieve random value to use as serial #ifdef USE_SOFT_SIGNING for (int i = 0; i < 9; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This value will be stored in EEPROM as soft serial:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random serial generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 9); } if (lockConfig == 0x00) { Serial.println(F("This value will be stored in EEPROM as soft serial:")); } else { Serial.println(F("Serial is not randomized (configuration not locked):")); } #endif // not USE_SOFT_SIGNING #endif // not USER_SOFT_SERIAL Serial.print("#define MY_SOFT_SERIAL "); for (int i=0; i<9; i++) { Serial.print("0x"); if (key[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(key[i], HEX); if (i < 8) { Serial.print(','); } } Serial.println(); hwWriteConfigBlock((void*)key, (void*)EEPROM_SIGNING_SOFT_SERIAL_ADDRESS, 9); #endif // STORE_SOFT_SERIAL #ifdef STORE_AES_KEY #ifdef USER_AES_KEY memcpy(key, user_aes_key, 16); Serial.println(F("Using this user supplied AES key:")); #else // Retrieve random value to use as key #ifdef USE_SOFT_SIGNING for (int i = 0; i < 16; i++) { key[i] = random(256) ^ micros(); unsigned long enter = hwMillis(); while (hwMillis() - enter < (unsigned long)2); } Serial.println(F("This key will be stored in EEPROM as AES key:")); #else ret_code = sha204.sha204m_random(tx_buffer, rx_buffer, RANDOM_SEED_UPDATE); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Random key generation failed. Response: ")); Serial.println(ret_code, HEX); halt(); } else { memcpy(key, rx_buffer+SHA204_BUFFER_POS_DATA, 32); } if (lockConfig == 0x00) { Serial.println(F("This key will be stored in EEPROM as AES key:")); } else { Serial.println(F("Key is not randomized (configuration not locked):")); } .... i have cut the rest of code because its to long to post here complete ...but i dont get any output on serial monitor. Do you know whaat is went wrong?
thanks@meddie it is a limitation of the current personalizer that it does not inherit the baud rate from the library settings. It is stuck to 115200. (can be changed of course). It will be fixed in the next personalizer update. Perhaps you expect a different baud rate?
SeeSerial.begin(115200); -
Hm. Then I don't know what's wrong. I have not yet used that hardware.
-
i just get the output, the serial console must be open while uploading the sketch, immedialty after the upload i see the output.
But all Keys are FFFFFFFSOFT_HMAC_KEY | FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF SOFT_SERIAL | FFFFFFFFFFFFFFFFFF AES_KEY | FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ATSHA204A DATA:Why this?
-
The personalizer doesn't wait for the usb port to be enumerated / attached. We need to add the following code in the start of setup() (if I remember right)
While(! Serial()) {}But only for devices using native USB (I thought that I had added it already, but I might be wrong)
-
The personalizer doesn't wait for the usb port to be enumerated / attached. We need to add the following code in the start of setup() (if I remember right)
While(! Serial()) {}But only for devices using native USB (I thought that I had added it already, but I might be wrong)