STM32?
-
I thought I'd just share a complete sketch. This is a sketch for a Co2 and dust sensor using the STM32 blue pill.
/* * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2015 Sensnology AB * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * DESCRIPTION * * MH-Z19 CO2 sensor * Uses infrared to measure Co2' absorbtion spectrum. Talks to the board over over serial 9600 on Serial1. * * PMS-7003 * This sensor uses a frickin' laser to measure lots of different fine dust levels, between 0.3 and 10 microns. * It can output the raw particle count for a certain particle size and up. Or it can give the official um/mg * measurement. Talks to the board over over serial 9600 on Serial2. * * * NRF24 pins: b0 a7 a6 a5 a4 (and 3.3v power) * MH-Z19 pins: a9 a1 (and 5v power) * PMS7001 pins: a2 a3 (and 5v power) */ /* //------------------------------------------------------------------------------ // PM sensor PMS7003 (fine dust) Copyright 2017 Scapeler Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ //------------------------------------------------------------------------------ // if you uncomment this, you can get test and debug updates about the sensor' wireless connection by using the serial monitor tool. #define MY_DEBUG // Enable and select radio type attached #define MY_RADIO_NRF24 // A 2.4Ghz transmitter and receiver, often used with MySensors. #define MY_RF24_PA_LEVEL RF24_PA_MIN // This sets a low-power mode for the radio. Useful if you use the verison with the bigger antenna, but don't want to power that from a separate power source. It can also fix problems with fake Chinese versions of the radio. // #define MY_RADIO_RFM69 // 433Mhz transmitter and reveiver. // This is needed if you use an STM32 board: #define MY_RF24_CE_PIN PB0 // Choose if you want this sensor to also be a repeater. // #define MY_REPEATER_FEATURE // Just remove the two slashes at the beginning of this line to also enable this sensor to act as a repeater for other sensors. If this node is on battery power, you probably shouldn't enable this. // Are you using this sensor on battery power? // #define BATTERY_POWERED // Just remove the two slashes at the beginning of this line if your node is battery powered. It will then go into deep sleep as much as possible. While it's sleeping it can't work as a repeater! #include <SPI.h> #include <MySensors.h> // Co2 sensor #define CHILD_ID_CO2 0 // The Co2 sensor // Dust sensor #define CHILD_ID_DUST_PM03 1 //#define CHILD_ID_DUST_PM05 2 #define CHILD_ID_DUST_PM10 2 #define CHILD_ID_DUST_PM25 3 #define CHILD_ID_DUST_PM50 4 #define CHILD_ID_DUST_PM100 5 // bool receivedConfig = false; // This is not used in the code, but perhaps MySensors requires this? // bool metric = true; // Variable that stores if the sensor will output the temperature in Fahrenheit of Celsius. The gateway sends this preference to the node. // Mysensors settings // Co2 MyMessage msgCo2(CHILD_ID_CO2, V_LEVEL); MyMessage msgCo2b(CHILD_ID_CO2, V_UNIT_PREFIX); // Dust. If you want to get all the raw data, the commented lines are useful. MyMessage msgDust03(CHILD_ID_DUST_PM03, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust03b(CHILD_ID_DUST_PM03, V_UNIT_PREFIX); //MyMessage msgDust05(CHILD_ID_DUST_PM05, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. //MyMessage msgDust05b(CHILD_ID_DUST_PM05, V_UNIT_PREFIX); MyMessage msgDust10(CHILD_ID_DUST_PM10, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust10b(CHILD_ID_DUST_PM10, V_UNIT_PREFIX); MyMessage msgDust25(CHILD_ID_DUST_PM25, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust25b(CHILD_ID_DUST_PM25, V_UNIT_PREFIX); MyMessage msgDust50(CHILD_ID_DUST_PM50, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust50b(CHILD_ID_DUST_PM50, V_UNIT_PREFIX); MyMessage msgDust100(CHILD_ID_DUST_PM100, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust100b(CHILD_ID_DUST_PM100, V_UNIT_PREFIX); // These defines and variables can be changed: // co2 unsigned long co2MeasurementInterval = 30000; // Time to wait between reads (in milliseconds). //float co2threshold = 0.1; // How big a measurement difference has to be before an update is sent. Makes the sensor less precise, but also less jittery, and can save battery. // dust // Are you using this sensor on battery power? // #define BATTERY_POWERED // Just remove the two slashes at the beginning of this line if your node is battery powered. It will then go into deep sleep as much as possible. While it's sleeping it can't work as a repeater! int dustSlowDown = 20; // The dust sensor is internally checked approximately every 700 or 800 milliseconds. Once in how many loops should it send the data? unsigned long dustMeasurementInterval = 700; // This is a fickle thing. Changing it can give more time-outs. // PROBABLE BEST NOT TO CHANGE THESE VARIABLES // PMS7003 sensor - input byte variables int inputHigh = 0; int inputLow = 0; // variable to caclulate checksum input variables uint16_t inputChecksum = 0; // sensor variables uint16_t concPM1_0_CF1; uint16_t concPM2_5_CF1; uint16_t concPM10_0_CF1; uint16_t concPM1_0_amb; uint16_t concPM2_5_amb; uint16_t concPM10_0_amb; uint16_t rawGt0_3um; uint16_t rawGt0_5um; uint16_t rawGt1_0um; uint16_t rawGt2_5um; uint16_t rawGt5_0um; uint16_t rawGt10_0um; uint8_t version; uint8_t errorCode; uint16_t checksum; int dustSlowDownCounter = 0; void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("AIQ Sensor CO2 MH-Z19 and Dust PMS-7003", "1.0"); // Register all sensors to gateway (they will be created as child devices): // co2 present(CHILD_ID_CO2, S_AIR_QUALITY); send(msgCo2b.set("ppm")); // dust //present(CHILD_ID_DUST_PM10, S_DUST); //send(msgPM10.set("ppm")); present(CHILD_ID_DUST_PM03, S_DUST); send(msgDust03b.set("um/m3")); //present(CHILD_ID_DUST_PM05, S_DUST); //send(msgDust05b.set("pp/dl")); present(CHILD_ID_DUST_PM10, S_DUST); send(msgDust10b.set("um/m3")); present(CHILD_ID_DUST_PM25, S_DUST); send(msgDust25b.set("um/m3")); present(CHILD_ID_DUST_PM100, S_DUST); send(msgDust100b.set("um/m3")); present(CHILD_ID_DUST_PM50, S_DUST); send(msgDust50b.set("pp/dl")); } void setup() { delay(1000); Serial.begin(115200); delay(1000); Serial1.begin(9600); //C02 sensor read serial while (!Serial1) { } Serial2.begin(9600); // PMS7003 dust sensor read serial while (!Serial2) { } delay(2000); while (Serial1.read()!=-1) {}; //clear Co2 buffer. Serial.println("hello world, I am a sensor."); } void loop() { // You should not change these variables: static unsigned long previousCo2Millis = 0; // Used to remember the time of the last temperature measurement. static unsigned long previousDustMillis = 0; // Used to remember the time of the last temperature measurement. unsigned long currentMillis = millis(); // The time since the sensor started, counted in milliseconds. This script tries to avoid using the Sleep function, so that it could at the same time be a MySensors repeater. // Co2 loop if (currentMillis - previousCo2Millis >= co2MeasurementInterval) { Serial.println(""); Serial.println("CO2 - Sending data request to sensor."); previousCo2Millis = currentMillis; long co2ppm = readCO2(); Serial.println("Co2 - PPM = " + String(co2ppm)); send(msgCo2.set((long)ceil(co2ppm))); Serial.print("Co2 - zzzzZZZZzzzzZZZZzzzz\n"); } // The dust sensor sends its data continuously, so let's get that data. int dustSensorOutput = pms7003ReadData(); } // MAIN FUNCTION THAT GETS THE Co2 DATA int readCO2() { while (Serial1.read()!=-1) {}; //clear buffer char response[9]; // for answer byte cmd[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79}; // command to ask for data Serial1.write(cmd, 9); //request PPM CO2 Serial1.readBytes(response, 9); Serial.print(response[0], HEX); Serial.print(" - "); Serial.print(response[1], HEX); Serial.print(" - "); Serial.print(response[2], HEX); Serial.print(" - "); Serial.print(response[3], HEX); Serial.print(" - "); Serial.print(response[4], HEX); Serial.print(" - "); Serial.print(response[5], HEX); Serial.print(" - "); Serial.print(response[6], HEX); Serial.print(" - "); Serial.print(response[7], HEX); Serial.print(" - "); Serial.print(response[8], HEX); Serial.println(" - END"); if (response[0] != 0xFF) { Serial.println("Wrong starting byte from co2 sensor!"); return -1; } if (response[1] != 0x86) { Serial.println("Wrong command from co2 sensor!"); return -1; } int responseHigh = (int) response[2]; int responseLow = (int) response[3]; int ppm = (256 * responseHigh) + responseLow; return ppm; } // MAIN FUNCTION FOR THE DUST SENSOR, Thanks to Scapeler.nl int pms7003ReadData() { // while (Serial2.read()!=-1) {}; //clear buffer if (Serial2.available() < 32) { if (Serial2.available() == 0) { delay(150); return -1; }; if (Serial2.available() > 16) { delay(10); return -1; }; if (Serial2.available() > 0) { delay(30); return -1; }; delay(100); return -1; } if (Serial2.read() != 0x42) return -1; if (Serial2.read() != 0x4D) return -1; inputChecksum = 0x42 + 0x4D; inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; if (inputHigh != 0x00) return -1; if (inputLow != 0x1c) return -1; inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM1_0_CF1 = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM2_5_CF1 = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM10_0_CF1 = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM1_0_amb = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM2_5_amb = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM10_0_amb = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt0_3um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt0_5um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt1_0um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt2_5um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt5_0um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt10_0um = inputLow+(inputHigh<<8); inputLow = Serial2.read(); inputChecksum += inputLow; version = inputLow; inputLow = Serial2.read(); inputChecksum += inputLow; errorCode = inputLow; Serial.print("PMS7003;"); // The measurement recalculated to micrograms per cubic meter, a common standard. Serial.print(concPM1_0_CF1); Serial.print(';'); Serial.print(concPM2_5_CF1); Serial.print(';'); Serial.print(concPM10_0_CF1); Serial.print(';'); // The measurement recalculated to micrograms per cubic meter, a common standard. Not quite sure what the difference is.. Serial.print(concPM1_0_amb); Serial.print(';'); Serial.print(concPM2_5_amb); Serial.print(';'); Serial.print(concPM10_0_amb); Serial.print(';'); // this is the 'raw' data that the sensor gathers internally, before it calculates the above values. Serial.print(rawGt0_3um); // This indicates total number or particles in 0.1 liter of air that have a diameter above 0.3um. This will be the biggest number, as it measures the most particles. But it's very imprecise: 50% accuracy.. Serial.print(';'); Serial.print(rawGt0_5um); // This indicates the total number or particles in 0.1 liter of air that have a diameter above 0.5um (so it will be a smaller count than the line above) Serial.print(';'); Serial.print(rawGt1_0um); // This indicates the total number or particles in 0.1 liter of air that have a diameter above 1 micron. And so on.. Serial.print(';'); Serial.print(rawGt2_5um); Serial.print(';'); Serial.print(rawGt5_0um); // Acording to the datashet, at this point the accuracy has reached at 98%. Serial.print(';'); Serial.print(rawGt10_0um); Serial.print(';'); Serial.print(version); Serial.print(';'); Serial.print(errorCode); Serial.println("---"); inputHigh = Serial2.read(); inputLow = Serial2.read(); checksum = inputLow+(inputHigh<<8); if (checksum != inputChecksum) { Serial.print(';'); Serial.print(checksum); Serial.print(';'); Serial.print(inputChecksum); } //Serial.print('\n'); // let's send a message with the results dustSlowDownCounter = dustSlowDownCounter + 1; if(dustSlowDownCounter > dustSlowDown){ /* MEASUREMENT */ if(rawGt1_0um > 0){ Serial.println(" Dust1_0 = " + String(concPM1_0_CF1)); send(msgDust10.set(concPM1_0_CF1,1)); } if(rawGt2_5um > 0){ Serial.println(" Dust1_0 = " + String(concPM2_5_CF1)); send(msgDust25.set(concPM2_5_CF1,1)); } if(rawGt10_0um > 0){ Serial.println(" Dust1_0 = " + String(concPM10_0_CF1)); send(msgDust100.set(concPM10_0_CF1,1)); } /* RAW DATA */ if(rawGt0_3um > 0){ Serial.println(" Dust03 = " + String(rawGt0_3um)); send(msgDust03.set(rawGt0_3um,1)); }/* if(rawGt0_5um > 0){ Serial.println(" Dust05 = " + String(rawGt0_5um)); send(msgDust05.set(rawGt0_5um,1)); } if(rawGt1_0um > 0){ Serial.println(" Dust10 = " + String(rawGt1_0um)); send(msgDust10.set(rawGt1_0um,1)); } if(rawGt2_5um > 0){ Serial.println(" Dust25 = " + String(rawGt2_5um)); send(msgDust25.set(rawGt2_5um,1)); } */ if(rawGt5_0um > 0){ Serial.println(" Dust50 = " + String(rawGt5_0um)); send(msgDust50.set(rawGt5_0um,1)); } /* if(rawGt10_0um > 0){ Serial.println(" Dust100 = " + String(rawGt10_0um)); send(msgDust100.set(rawGt10_0um,1)); } */ dustSlowDownCounter = 0; } // End of sensing message. delay(700); // Data will come between 200 and 800 miliseconds. If you set this be be higher than 700 you will get checksum errors. return concPM2_5_CF1; } -
I thought I'd just share a complete sketch. This is a sketch for a Co2 and dust sensor using the STM32 blue pill.
/* * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2015 Sensnology AB * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * DESCRIPTION * * MH-Z19 CO2 sensor * Uses infrared to measure Co2' absorbtion spectrum. Talks to the board over over serial 9600 on Serial1. * * PMS-7003 * This sensor uses a frickin' laser to measure lots of different fine dust levels, between 0.3 and 10 microns. * It can output the raw particle count for a certain particle size and up. Or it can give the official um/mg * measurement. Talks to the board over over serial 9600 on Serial2. * * * NRF24 pins: b0 a7 a6 a5 a4 (and 3.3v power) * MH-Z19 pins: a9 a1 (and 5v power) * PMS7001 pins: a2 a3 (and 5v power) */ /* //------------------------------------------------------------------------------ // PM sensor PMS7003 (fine dust) Copyright 2017 Scapeler Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ //------------------------------------------------------------------------------ // if you uncomment this, you can get test and debug updates about the sensor' wireless connection by using the serial monitor tool. #define MY_DEBUG // Enable and select radio type attached #define MY_RADIO_NRF24 // A 2.4Ghz transmitter and receiver, often used with MySensors. #define MY_RF24_PA_LEVEL RF24_PA_MIN // This sets a low-power mode for the radio. Useful if you use the verison with the bigger antenna, but don't want to power that from a separate power source. It can also fix problems with fake Chinese versions of the radio. // #define MY_RADIO_RFM69 // 433Mhz transmitter and reveiver. // This is needed if you use an STM32 board: #define MY_RF24_CE_PIN PB0 // Choose if you want this sensor to also be a repeater. // #define MY_REPEATER_FEATURE // Just remove the two slashes at the beginning of this line to also enable this sensor to act as a repeater for other sensors. If this node is on battery power, you probably shouldn't enable this. // Are you using this sensor on battery power? // #define BATTERY_POWERED // Just remove the two slashes at the beginning of this line if your node is battery powered. It will then go into deep sleep as much as possible. While it's sleeping it can't work as a repeater! #include <SPI.h> #include <MySensors.h> // Co2 sensor #define CHILD_ID_CO2 0 // The Co2 sensor // Dust sensor #define CHILD_ID_DUST_PM03 1 //#define CHILD_ID_DUST_PM05 2 #define CHILD_ID_DUST_PM10 2 #define CHILD_ID_DUST_PM25 3 #define CHILD_ID_DUST_PM50 4 #define CHILD_ID_DUST_PM100 5 // bool receivedConfig = false; // This is not used in the code, but perhaps MySensors requires this? // bool metric = true; // Variable that stores if the sensor will output the temperature in Fahrenheit of Celsius. The gateway sends this preference to the node. // Mysensors settings // Co2 MyMessage msgCo2(CHILD_ID_CO2, V_LEVEL); MyMessage msgCo2b(CHILD_ID_CO2, V_UNIT_PREFIX); // Dust. If you want to get all the raw data, the commented lines are useful. MyMessage msgDust03(CHILD_ID_DUST_PM03, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust03b(CHILD_ID_DUST_PM03, V_UNIT_PREFIX); //MyMessage msgDust05(CHILD_ID_DUST_PM05, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. //MyMessage msgDust05b(CHILD_ID_DUST_PM05, V_UNIT_PREFIX); MyMessage msgDust10(CHILD_ID_DUST_PM10, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust10b(CHILD_ID_DUST_PM10, V_UNIT_PREFIX); MyMessage msgDust25(CHILD_ID_DUST_PM25, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust25b(CHILD_ID_DUST_PM25, V_UNIT_PREFIX); MyMessage msgDust50(CHILD_ID_DUST_PM50, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust50b(CHILD_ID_DUST_PM50, V_UNIT_PREFIX); MyMessage msgDust100(CHILD_ID_DUST_PM100, V_LEVEL); // Sets up the message format that we'l be sending to the MySensors gateway later. MyMessage msgDust100b(CHILD_ID_DUST_PM100, V_UNIT_PREFIX); // These defines and variables can be changed: // co2 unsigned long co2MeasurementInterval = 30000; // Time to wait between reads (in milliseconds). //float co2threshold = 0.1; // How big a measurement difference has to be before an update is sent. Makes the sensor less precise, but also less jittery, and can save battery. // dust // Are you using this sensor on battery power? // #define BATTERY_POWERED // Just remove the two slashes at the beginning of this line if your node is battery powered. It will then go into deep sleep as much as possible. While it's sleeping it can't work as a repeater! int dustSlowDown = 20; // The dust sensor is internally checked approximately every 700 or 800 milliseconds. Once in how many loops should it send the data? unsigned long dustMeasurementInterval = 700; // This is a fickle thing. Changing it can give more time-outs. // PROBABLE BEST NOT TO CHANGE THESE VARIABLES // PMS7003 sensor - input byte variables int inputHigh = 0; int inputLow = 0; // variable to caclulate checksum input variables uint16_t inputChecksum = 0; // sensor variables uint16_t concPM1_0_CF1; uint16_t concPM2_5_CF1; uint16_t concPM10_0_CF1; uint16_t concPM1_0_amb; uint16_t concPM2_5_amb; uint16_t concPM10_0_amb; uint16_t rawGt0_3um; uint16_t rawGt0_5um; uint16_t rawGt1_0um; uint16_t rawGt2_5um; uint16_t rawGt5_0um; uint16_t rawGt10_0um; uint8_t version; uint8_t errorCode; uint16_t checksum; int dustSlowDownCounter = 0; void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("AIQ Sensor CO2 MH-Z19 and Dust PMS-7003", "1.0"); // Register all sensors to gateway (they will be created as child devices): // co2 present(CHILD_ID_CO2, S_AIR_QUALITY); send(msgCo2b.set("ppm")); // dust //present(CHILD_ID_DUST_PM10, S_DUST); //send(msgPM10.set("ppm")); present(CHILD_ID_DUST_PM03, S_DUST); send(msgDust03b.set("um/m3")); //present(CHILD_ID_DUST_PM05, S_DUST); //send(msgDust05b.set("pp/dl")); present(CHILD_ID_DUST_PM10, S_DUST); send(msgDust10b.set("um/m3")); present(CHILD_ID_DUST_PM25, S_DUST); send(msgDust25b.set("um/m3")); present(CHILD_ID_DUST_PM100, S_DUST); send(msgDust100b.set("um/m3")); present(CHILD_ID_DUST_PM50, S_DUST); send(msgDust50b.set("pp/dl")); } void setup() { delay(1000); Serial.begin(115200); delay(1000); Serial1.begin(9600); //C02 sensor read serial while (!Serial1) { } Serial2.begin(9600); // PMS7003 dust sensor read serial while (!Serial2) { } delay(2000); while (Serial1.read()!=-1) {}; //clear Co2 buffer. Serial.println("hello world, I am a sensor."); } void loop() { // You should not change these variables: static unsigned long previousCo2Millis = 0; // Used to remember the time of the last temperature measurement. static unsigned long previousDustMillis = 0; // Used to remember the time of the last temperature measurement. unsigned long currentMillis = millis(); // The time since the sensor started, counted in milliseconds. This script tries to avoid using the Sleep function, so that it could at the same time be a MySensors repeater. // Co2 loop if (currentMillis - previousCo2Millis >= co2MeasurementInterval) { Serial.println(""); Serial.println("CO2 - Sending data request to sensor."); previousCo2Millis = currentMillis; long co2ppm = readCO2(); Serial.println("Co2 - PPM = " + String(co2ppm)); send(msgCo2.set((long)ceil(co2ppm))); Serial.print("Co2 - zzzzZZZZzzzzZZZZzzzz\n"); } // The dust sensor sends its data continuously, so let's get that data. int dustSensorOutput = pms7003ReadData(); } // MAIN FUNCTION THAT GETS THE Co2 DATA int readCO2() { while (Serial1.read()!=-1) {}; //clear buffer char response[9]; // for answer byte cmd[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79}; // command to ask for data Serial1.write(cmd, 9); //request PPM CO2 Serial1.readBytes(response, 9); Serial.print(response[0], HEX); Serial.print(" - "); Serial.print(response[1], HEX); Serial.print(" - "); Serial.print(response[2], HEX); Serial.print(" - "); Serial.print(response[3], HEX); Serial.print(" - "); Serial.print(response[4], HEX); Serial.print(" - "); Serial.print(response[5], HEX); Serial.print(" - "); Serial.print(response[6], HEX); Serial.print(" - "); Serial.print(response[7], HEX); Serial.print(" - "); Serial.print(response[8], HEX); Serial.println(" - END"); if (response[0] != 0xFF) { Serial.println("Wrong starting byte from co2 sensor!"); return -1; } if (response[1] != 0x86) { Serial.println("Wrong command from co2 sensor!"); return -1; } int responseHigh = (int) response[2]; int responseLow = (int) response[3]; int ppm = (256 * responseHigh) + responseLow; return ppm; } // MAIN FUNCTION FOR THE DUST SENSOR, Thanks to Scapeler.nl int pms7003ReadData() { // while (Serial2.read()!=-1) {}; //clear buffer if (Serial2.available() < 32) { if (Serial2.available() == 0) { delay(150); return -1; }; if (Serial2.available() > 16) { delay(10); return -1; }; if (Serial2.available() > 0) { delay(30); return -1; }; delay(100); return -1; } if (Serial2.read() != 0x42) return -1; if (Serial2.read() != 0x4D) return -1; inputChecksum = 0x42 + 0x4D; inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; if (inputHigh != 0x00) return -1; if (inputLow != 0x1c) return -1; inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM1_0_CF1 = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM2_5_CF1 = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM10_0_CF1 = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM1_0_amb = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM2_5_amb = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; concPM10_0_amb = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt0_3um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt0_5um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt1_0um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt2_5um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt5_0um = inputLow+(inputHigh<<8); inputHigh = Serial2.read(); inputLow = Serial2.read(); inputChecksum += inputHigh + inputLow; rawGt10_0um = inputLow+(inputHigh<<8); inputLow = Serial2.read(); inputChecksum += inputLow; version = inputLow; inputLow = Serial2.read(); inputChecksum += inputLow; errorCode = inputLow; Serial.print("PMS7003;"); // The measurement recalculated to micrograms per cubic meter, a common standard. Serial.print(concPM1_0_CF1); Serial.print(';'); Serial.print(concPM2_5_CF1); Serial.print(';'); Serial.print(concPM10_0_CF1); Serial.print(';'); // The measurement recalculated to micrograms per cubic meter, a common standard. Not quite sure what the difference is.. Serial.print(concPM1_0_amb); Serial.print(';'); Serial.print(concPM2_5_amb); Serial.print(';'); Serial.print(concPM10_0_amb); Serial.print(';'); // this is the 'raw' data that the sensor gathers internally, before it calculates the above values. Serial.print(rawGt0_3um); // This indicates total number or particles in 0.1 liter of air that have a diameter above 0.3um. This will be the biggest number, as it measures the most particles. But it's very imprecise: 50% accuracy.. Serial.print(';'); Serial.print(rawGt0_5um); // This indicates the total number or particles in 0.1 liter of air that have a diameter above 0.5um (so it will be a smaller count than the line above) Serial.print(';'); Serial.print(rawGt1_0um); // This indicates the total number or particles in 0.1 liter of air that have a diameter above 1 micron. And so on.. Serial.print(';'); Serial.print(rawGt2_5um); Serial.print(';'); Serial.print(rawGt5_0um); // Acording to the datashet, at this point the accuracy has reached at 98%. Serial.print(';'); Serial.print(rawGt10_0um); Serial.print(';'); Serial.print(version); Serial.print(';'); Serial.print(errorCode); Serial.println("---"); inputHigh = Serial2.read(); inputLow = Serial2.read(); checksum = inputLow+(inputHigh<<8); if (checksum != inputChecksum) { Serial.print(';'); Serial.print(checksum); Serial.print(';'); Serial.print(inputChecksum); } //Serial.print('\n'); // let's send a message with the results dustSlowDownCounter = dustSlowDownCounter + 1; if(dustSlowDownCounter > dustSlowDown){ /* MEASUREMENT */ if(rawGt1_0um > 0){ Serial.println(" Dust1_0 = " + String(concPM1_0_CF1)); send(msgDust10.set(concPM1_0_CF1,1)); } if(rawGt2_5um > 0){ Serial.println(" Dust1_0 = " + String(concPM2_5_CF1)); send(msgDust25.set(concPM2_5_CF1,1)); } if(rawGt10_0um > 0){ Serial.println(" Dust1_0 = " + String(concPM10_0_CF1)); send(msgDust100.set(concPM10_0_CF1,1)); } /* RAW DATA */ if(rawGt0_3um > 0){ Serial.println(" Dust03 = " + String(rawGt0_3um)); send(msgDust03.set(rawGt0_3um,1)); }/* if(rawGt0_5um > 0){ Serial.println(" Dust05 = " + String(rawGt0_5um)); send(msgDust05.set(rawGt0_5um,1)); } if(rawGt1_0um > 0){ Serial.println(" Dust10 = " + String(rawGt1_0um)); send(msgDust10.set(rawGt1_0um,1)); } if(rawGt2_5um > 0){ Serial.println(" Dust25 = " + String(rawGt2_5um)); send(msgDust25.set(rawGt2_5um,1)); } */ if(rawGt5_0um > 0){ Serial.println(" Dust50 = " + String(rawGt5_0um)); send(msgDust50.set(rawGt5_0um,1)); } /* if(rawGt10_0um > 0){ Serial.println(" Dust100 = " + String(rawGt10_0um)); send(msgDust100.set(rawGt10_0um,1)); } */ dustSlowDownCounter = 0; } // End of sensing message. delay(700); // Data will come between 200 and 800 miliseconds. If you set this be be higher than 700 you will get checksum errors. return concPM2_5_CF1; } -
I just finished my first low power test implementation for STM32: a low power dual button sensor using RFM69 and external interrupts. It seems to work very well so far. My multimeter shows 0.01 mA sleep current, but I'm not sure how well this can be trusted.
The sketch can be found here: https://github.com/freynder/LowPowerButtons
It uses platformio IDE directory structure.The modifications to MySensors (not complete/nicely implemented yet) can be found here: https://github.com/freynder/MySensors/tree/stm32f1_sleep
I hope to find time in the near future to clean it up + implement support for interrupts and contribute it to the project if not already available by then. -
When saying STM32 you have to specify which one you mean. The STM32L0 Series series has 2kB EEPROM on board.
-
I said boards, not chips. Chips I can get a dime a dozen.
And as there aren't any cheap STM32L0 boards now, most people will stay with the blue pill. -
And neither is there an arduino core available for those chips, they use and m0 core and not m3 like in the F103 versions.
-
And neither is there an arduino core available for those chips, they use and m0 core and not m3 like in the F103 versions.
-
@Nca78 The Arduino Zero is also an M0, so this shouldn't be too complicated.
Peripherals are completely different, though.@Nca78 The Arduino Zero is also an M0, so this shouldn't be too complicated.
Peripherals are completely different, though.Yes and NRF51822 is too and the core is based on SAMD core which is from the Zero.
But it's still a lot of work to adapt it first for Arduino and then add support in MySensors, when an NRF52832 already has a core, support in MySensors and is available at a similar price but with better performance (Cortex M4 with FPU) and includes the radio.
And now there's an Arduino using nrf52832 (Primo), I'm pretty sure we will "soon" find some nrf52832 boards on AliExpress at a reasonable price. -
How does the NRF52832 fare, compared to a classical solution using Arduino Nano and nRF24?
Is it usable for a sleeping node with a (window) switch, or a remote environmental sensor, when it comes to range and power consumption?
Is the software already stable enough? -
How does the NRF52832 fare, compared to a classical solution using Arduino Nano and nRF24?
Is it usable for a sleeping node with a (window) switch, or a remote environmental sensor, when it comes to range and power consumption?
Is the software already stable enough?@Uhrheber see this thread
https://forum.mysensors.org/topic/6961/nrf5-bluetooth-action/805There's still progress to make but it works, and with DCDC enabled power consumption is much lower than on nrf24.
-
Hi all, Can somebody help me please?
I add also some STM32 blue pill and try to run mysensors on them.
I use the devlopment branch. Compilation is OK and I successfully flash it on my board with STLink.
But I don't see any message/log. I am not sure that the software is runnning.
How can I debug that?thansk
-
Hi all, Can somebody help me please?
I add also some STM32 blue pill and try to run mysensors on them.
I use the devlopment branch. Compilation is OK and I successfully flash it on my board with STLink.
But I don't see any message/log. I am not sure that the software is runnning.
How can I debug that?thansk
@ooznerol : it's been a while but I've had some issues with this as well. Here are some pointers that may help you:
If I remember correctly, it depends on the upload method which may set particular build flags. In my platformio configuration for example, I'm setting the following build flags:
build_flags = -DCONFIG_MAPLE_MINI_NO_DISABLE_DEBUG=1 -DSERIAL_USB -DGENERIC_BOOTLOADER when using the stlink upload method. CONFIG_MAPLE_MINI_NO_DISABLE_DEBUG was necessary to preserve the SWD pins and SERIAL_USB creates a virtual UART for serial output to the USB port. If Serial_USB is not set then the hardware serial is being used. Which one? According to https://github.com/rogerclarkmelbourne/STM32duino-bootloader/issues/8 it depends on the fact that you are using a bootloader or not, so serial1 (PA9/PA10) or serial2 (PA2/PA3).Also, if you experience issues with the USB connection, check the pullup resistor on D+ as indicated in http://wiki.stm32duino.com/index.php?title=Blue_Pill .
I'm not sure what IDE/upload method/board library you are using. In any case, watching the output during upload to find out the build flags may be useful. If that does not help, then pls send me the details of your setup and I will try to test it myself.