Zbigniew Ko:
(2.1.1 mysensors compatible, but first you need to install the BME280_MOD-1022.h library in arduino IDE)
/**
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
* Copyright (C) 2013-2015 Sensnology AB
* Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*******************************
*
* REVISION HISTORY
* Version 1.0 - Henrik Ekblad
*
* DESCRIPTION
* Pressure sensor example using BMP085 module
* http://www.mysensors.org/build/pressure
*
*/
// Enable debug prints to serial monitor
#define MY_DEBUG
// Enable and select radio type attached
#define MY_RADIO_NRF24
//#define MY_RADIO_RFM69
#include <SPI.h>
#include <MySensors.h>
#include <Wire.h>
// BME280 libraries and variables
// Bosch BME280 Embedded Adventures MOD-1022 weather multi-sensor Arduino code
// Written originally by Embedded Adventures
// https://github.com/embeddedadventures/BME280
#include <BME280_MOD-1022.h>
#define BARO_CHILD 0
#define TEMP_CHILD 1
#define HUM_CHILD 2
const float ALTITUDE = 184; // <-- adapt this value to your location's altitude (in m). Use your smartphone GPS to get an accurate value!
// Sleep time between reads (in ms). Do not change this value as the forecast algorithm needs a sample every minute.
const unsigned long SLEEP_TIME = 60000;
const char *weather[] = { "stable", "sunny", "cloudy", "unstable", "thunderstorm", "unknown" };
enum FORECAST
{
STABLE = 0, // "Stable Weather Pattern"
SUNNY = 1, // "Slowly rising Good Weather", "Clear/Sunny "
CLOUDY = 2, // "Slowly falling L-Pressure ", "Cloudy/Rain "
UNSTABLE = 3, // "Quickly rising H-Press", "Not Stable"
THUNDERSTORM = 4, // "Quickly falling L-Press", "Thunderstorm"
UNKNOWN = 5 // "Unknown (More Time needed)
};
float lastPressure = -1;
float lastTemp = -1;
float lastHum = -1;
int lastForecast = -1;
const int LAST_SAMPLES_COUNT = 5;
float lastPressureSamples[LAST_SAMPLES_COUNT];
// this CONVERSION_FACTOR is used to convert from Pa to kPa in the forecast algorithm
// get kPa/h by dividing hPa by 10
#define CONVERSION_FACTOR (1.0/10.0)
int minuteCount = 0;
bool firstRound = true;
// average value is used in forecast algorithm.
float pressureAvg;
// average after 2 hours is used as reference value for the next iteration.
float pressureAvg2;
float dP_dt;
boolean metric;
MyMessage tempMsg(TEMP_CHILD, V_TEMP);
MyMessage humMsg(HUM_CHILD, V_HUM);
MyMessage pressureMsg(BARO_CHILD, V_PRESSURE);
MyMessage forecastMsg(BARO_CHILD, V_FORECAST);
float getLastPressureSamplesAverage()
{
float lastPressureSamplesAverage = 0;
for (int i = 0; i < LAST_SAMPLES_COUNT; i++)
{
lastPressureSamplesAverage += lastPressureSamples[i];
}
lastPressureSamplesAverage /= LAST_SAMPLES_COUNT;
return lastPressureSamplesAverage;
}
// Algorithm found here
// http://www.freescale.com/files/sensors/doc/app_note/AN3914.pdf
// Pressure in hPa --> forecast done by calculating kPa/h
int sample(float pressure)
{
// Calculate the average of the last n minutes.
int index = minuteCount % LAST_SAMPLES_COUNT;
lastPressureSamples[index] = pressure;
minuteCount++;
if (minuteCount > 185)
{
minuteCount = 6;
}
if (minuteCount == 5)
{
pressureAvg = getLastPressureSamplesAverage();
}
else if (minuteCount == 35)
{
float lastPressureAvg = getLastPressureSamplesAverage();
float change = (lastPressureAvg - pressureAvg) * CONVERSION_FACTOR;
if (firstRound) // first time initial 3 hour
{
dP_dt = change * 2; // note this is for t = 0.5hour
}
else
{
dP_dt = change / 1.5; // divide by 1.5 as this is the difference in time from 0 value.
}
}
else if (minuteCount == 65)
{
float lastPressureAvg = getLastPressureSamplesAverage();
float change = (lastPressureAvg - pressureAvg) * CONVERSION_FACTOR;
if (firstRound) //first time initial 3 hour
{
dP_dt = change; //note this is for t = 1 hour
}
else
{
dP_dt = change / 2; //divide by 2 as this is the difference in time from 0 value
}
}
else if (minuteCount == 95)
{
float lastPressureAvg = getLastPressureSamplesAverage();
float change = (lastPressureAvg - pressureAvg) * CONVERSION_FACTOR;
if (firstRound) // first time initial 3 hour
{
dP_dt = change / 1.5; // note this is for t = 1.5 hour
}
else
{
dP_dt = change / 2.5; // divide by 2.5 as this is the difference in time from 0 value
}
}
else if (minuteCount == 125)
{
float lastPressureAvg = getLastPressureSamplesAverage();
pressureAvg2 = lastPressureAvg; // store for later use.
float change = (lastPressureAvg - pressureAvg) * CONVERSION_FACTOR;
if (firstRound) // first time initial 3 hour
{
dP_dt = change / 2; // note this is for t = 2 hour
}
else
{
dP_dt = change / 3; // divide by 3 as this is the difference in time from 0 value
}
}
else if (minuteCount == 155)
{
float lastPressureAvg = getLastPressureSamplesAverage();
float change = (lastPressureAvg - pressureAvg) * CONVERSION_FACTOR;
if (firstRound) // first time initial 3 hour
{
dP_dt = change / 2.5; // note this is for t = 2.5 hour
}
else
{
dP_dt = change / 3.5; // divide by 3.5 as this is the difference in time from 0 value
}
}
else if (minuteCount == 185)
{
float lastPressureAvg = getLastPressureSamplesAverage();
float change = (lastPressureAvg - pressureAvg) * CONVERSION_FACTOR;
if (firstRound) // first time initial 3 hour
{
dP_dt = change / 3; // note this is for t = 3 hour
}
else
{
dP_dt = change / 4; // divide by 4 as this is the difference in time from 0 value
}
pressureAvg = pressureAvg2; // Equating the pressure at 0 to the pressure at 2 hour after 3 hours have past.
firstRound = false; // flag to let you know that this is on the past 3 hour mark. Initialized to 0 outside main loop.
}
int forecast = UNKNOWN;
if (minuteCount < 35 && firstRound) //if time is less than 35 min on the first 3 hour interval.
{
forecast = UNKNOWN;
}
else if (dP_dt < (-0.25))
{
forecast = THUNDERSTORM;
}
else if (dP_dt > 0.25)
{
forecast = UNSTABLE;
}
else if ((dP_dt > (-0.25)) && (dP_dt < (-0.05)))
{
forecast = CLOUDY;
}
else if ((dP_dt > 0.05) && (dP_dt < 0.25))
{
forecast = SUNNY;
}
else if ((dP_dt >(-0.05)) && (dP_dt < 0.05))
{
forecast = STABLE;
}
else
{
forecast = UNKNOWN;
}
// uncomment when debugging
//Serial.print(F("Forecast at minute "));
//Serial.print(minuteCount);
//Serial.print(F(" dP/dt = "));
//Serial.print(dP_dt);
//Serial.print(F("kPa/h --> "));
//Serial.println(weather[forecast]);
return forecast;
}
void setup() {
metric = getControllerConfig().isMetric; // was getConfig().isMetric; before MySensors v2.1.1
Wire.begin(); // Wire.begin(sda, scl)
}
void presentation() {
// Send the sketch version information to the gateway and Controller
sendSketchInfo("BME280 Sensor", "1.6");
// Register sensors to gw (they will be created as child devices)
present(BARO_CHILD, S_BARO);
present(TEMP_CHILD, S_TEMP);
present(HUM_CHILD, S_HUM);
}
// Loop
void loop() {
// need to read the NVM compensation parameters
BME280.readCompensationParams();
/* After taking the measurement the chip goes back to sleep, use when battery powered.
// Oversampling settings (os1x, os2x, os4x, os8x or os16x).
BME280.writeFilterCoefficient(fc_16); // IIR Filter coefficient, higher numbers avoid sudden changes to be accounted for (such as slamming a door)
BME280.writeOversamplingPressure(os16x); // pressure x16
BME280.writeOversamplingTemperature(os8x); // temperature x8
BME280.writeOversamplingHumidity(os8x); // humidity x8
BME280.writeMode(smForced); // Forced sample. After taking the measurement the chip goes back to sleep
*/
// Normal mode for regular automatic samples
BME280.writeStandbyTime(tsb_0p5ms); // tsb = 0.5ms
BME280.writeFilterCoefficient(fc_16); // IIR Filter coefficient 16
BME280.writeOversamplingPressure(os16x); // pressure x16
BME280.writeOversamplingTemperature(os8x); // temperature x8
BME280.writeOversamplingHumidity(os8x); // humidity x8
BME280.writeMode(smNormal);
while (1) {
// Just to be sure, wait until sensor is done mesuring
while (BME280.isMeasuring()) {
}
// Read out the data - must do this before calling the getxxxxx routines
BME280.readMeasurements();
float temperature = BME280.getTemperatureMostAccurate(); // must get temp first
float humidity = BME280.getHumidityMostAccurate();
float pressure_local = BME280.getPressureMostAccurate(); // Get pressure at current location
float pressure = pressure_local/pow((1.0 - ( ALTITUDE / 44330.0 )), 5.255); // Adjust to sea level pressure using user altitude
int forecast = sample(pressure);
if (!metric)
{
// Convert to fahrenheit
temperature = temperature * 9.0 / 5.0 + 32.0;
}
Serial.println();
Serial.print("Temperature = ");
Serial.print(temperature);
Serial.println(metric ? " °C" : " °F");
Serial.print("Humidity = ");
Serial.print(humidity);
Serial.println(" %");
Serial.print("Pressure = ");
Serial.print(pressure);
Serial.println(" hPa");
Serial.print("Forecast = ");
Serial.println(weather[forecast]);
Serial.println();
if (temperature != lastTemp)
{
send(tempMsg.set(temperature, 1));
lastTemp = temperature;
}
if (humidity != lastHum)
{
send(humMsg.set(humidity, 1));
lastHum = humidity;
}
if (pressure != lastPressure)
{
send(pressureMsg.set(pressure, 2));
lastPressure = pressure;
}
if (forecast != lastForecast)
{
send(forecastMsg.set(weather[forecast]));
lastForecast = forecast;
}
sleep(SLEEP_TIME);
}
}