Can't find parent after changing NRF24L01+ radio
-
For several months now I have been successfully using my Sensebender micro boards with some NRF24L01+ radios bought on eBay from China. On some of my furthest nodes from the gateway, I do get some data loss, so after reading on the forum about the multitude of fake radios around, I thought I would try and buy some genuine ones to see if they perform better.
I bought these recently from Itead, and have been testing them today, but cannot get communication going with my gateway. After enabling debug mode on the Sensebender micro, I believe the serial output indicates that it can't find the parent:22:10:32.837 -> 16 MCO:BGN:INIT NODE,CP=RNONA---,FQ=8,REL=255,VER=2.3.2 22:10:32.870 -> 28 TSM:INIT 22:10:32.870 -> 28 TSF:WUR:MS=0 22:10:32.870 -> 36 TSM:INIT:TSP OK 22:10:32.870 -> 38 TSM:INIT:STATID=9 22:10:32.870 -> 40 TSF:SID:OK,ID=9 22:10:32.870 -> 43 TSM:FPAR 22:10:32.870 -> 47 ?TSF:MSG:SEND,9-9-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK: 22:10:34.893 -> 2056 !TSM:FPAR:NO REPLY 22:10:34.893 -> 2058 TSM:FPAR 22:10:34.893 -> 2062 ?TSF:MSG:SEND,9-9-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK: 22:10:36.930 -> 4071 !TSM:FPAR:NO REPLY 22:10:36.947 -> 4073 TSM:FPAR 22:10:36.947 -> 4077 ?TSF:MSG:SEND,9-9-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK: 22:10:38.969 -> 6086 !TSM:FPAR:NO REPLY 22:10:38.969 -> 6088 TSM:FPAR 22:10:38.969 -> 6092 ?TSF:MSG:SEND,9-9-255-255,s=255,c=3,t=7,pt=0,l=0,sg=0,ft=0,st=OK: 22:10:40.991 -> 8101 !TSM:FPAR:FAIL 22:10:41.024 -> 8103 TSM:FAIL:CNT=1
If I put the old NRF24 module back into the Sensebender micro (after powering down and up again), it successfully connects and starts transmitting data. I've tried the following without success:
- Move node closer to gateway
- Added a 470uF electrolytic capacitor between GND and VCC of the new NRF24L01+ board (the 'old' radio board doesn't have one, and works ok)
- Cleared the EEPROM of the Sensebender micro before uploading the same sketch that was successfully running on it previously
- Testing it both from the laptop USB supply and 2 x AA batteries
Is there anything specific that needs to be done when changing radio modules? Any tips on what else I can try?
I did notice that the new radio modules I bought seem to have less SMD components on them, see here (left is the working eBay variant, while right is the non-working Itead variant):
The gateway is an amplified NRF24L01+ module connected to a Raspberry Pi 3+. I did compile it about a year ago, so it is probably not the latest version (though if I'm honest I am not sure how I can check), but it does work with the old radio module.
If required, this is the code running on the Sensebender Micro (with the only changes being the addition of a node number, and some updates to the sending of battery voltage, as I believe there was/is an error in the standard code for sending the raw values):* The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2015 Sensnology AB * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * REVISION HISTORY * Version 1.0 - Thomas Bowman MC8rch * * DESCRIPTION * Default sensor sketch for Sensebender Micro module * Act as a temperature / humidity sensor by default. * * If A0 is held low while powering on, it will enter testmode, which verifies all on-board peripherals * * Battery voltage is as battery percentage (Internal message), and optionally as a sensor value (See defines below) * * * Version 1.3 - Thomas Bowman MC8rch * Improved transmission logic, eliminating spurious transmissions (when temperatuere / humidity fluctuates 1 up and down between measurements) * Added OTA boot mode, need to hold A1 low while applying power. (uses slightly more power as it's waiting for bootloader messages) * * Version 1.4 - Thomas Bowman MC8rch * * Corrected division in the code deciding whether to transmit or not, that resulted in generating an integer. Now it's generating floats as expected. * Simplified detection for OTA bootloader, now detecting if MY_OTA_FIRMWARE_FEATURE is defined. If this is defined sensebender automaticly waits 300mS after each transmission * Moved Battery status messages, so they are transmitted together with normal sensor updates (but only every 60th minute) * */ // Enable debug prints to serial monitor #define MY_DEBUG // Define a static node address, remove if you want auto address assignment #define MY_NODE_ID 9 // Enable and select radio type attached #define MY_RADIO_NRF24 //#define MY_RADIO_RFM69 // Enable to support OTA for this node (needs DualOptiBoot boot-loader to fully work) #define MY_OTA_FIRMWARE_FEATURE #include <SPI.h> #include <MySensors.h> #include <Wire.h> #include <SI7021.h> #ifndef MY_OTA_FIRMWARE_FEATURE #include "drivers/SPIFlash/SPIFlash.cpp" #endif #include <EEPROM.h> #include <sha204_lib_return_codes.h> #include <sha204_library.h> #include <RunningAverage.h> //#include <avr/power.h> // Uncomment the line below, to transmit battery voltage as a normal sensor value #define BATT_SENSOR 199 #define RELEASE "1.4" #define AVERAGES 2 // Child sensor ID's #define CHILD_ID_TEMP 1 #define CHILD_ID_HUM 2 // How many milli seconds between each measurement #define MEASURE_INTERVAL 60000 // How many milli seconds should we wait for OTA? #define OTA_WAIT_PERIOD 300 // FORCE_TRANSMIT_INTERVAL, this number of times of wakeup, the sensor is forced to report all values to the controller #define FORCE_TRANSMIT_INTERVAL 30 // When MEASURE_INTERVAL is 60000 and FORCE_TRANSMIT_INTERVAL is 30, we force a transmission every 30 minutes. // Between the forced transmissions a tranmission will only occur if the measured value differs from the previous measurement // HUMI_TRANSMIT_THRESHOLD tells how much the humidity should have changed since last time it was transmitted. Likewise with // TEMP_TRANSMIT_THRESHOLD for temperature threshold. #define HUMI_TRANSMIT_THRESHOLD 0.5 #define TEMP_TRANSMIT_THRESHOLD 0.5 // Pin definitions #define TEST_PIN A0 #define LED_PIN A2 #define ATSHA204_PIN 17 // A3 const int sha204Pin = ATSHA204_PIN; atsha204Class sha204(sha204Pin); SI7021 humiditySensor; SPIFlash flash(8, 0x1F65); // Sensor messages MyMessage msgHum(CHILD_ID_HUM, V_HUM); MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP); #ifdef BATT_SENSOR MyMessage msgBatt(BATT_SENSOR, V_VOLTAGE); #endif // Global settings int measureCount = 0; int sendBattery = 0; boolean isMetric = true; boolean highfreq = true; boolean transmission_occured = false; // Storage of old measurements float lastTemperature = -100; int lastHumidity = -100; long lastBattery = -100; RunningAverage raHum(AVERAGES); /**************************************************** * * Setup code * ****************************************************/ void setup() { pinMode(LED_PIN, OUTPUT); digitalWrite(LED_PIN, LOW); Serial.begin(115200); Serial.print(F("Sensebender Micro FW ")); Serial.print(RELEASE); Serial.flush(); // First check if we should boot into test mode pinMode(TEST_PIN,INPUT); digitalWrite(TEST_PIN, HIGH); // Enable pullup if (!digitalRead(TEST_PIN)) testMode(); // Make sure that ATSHA204 is not floating pinMode(ATSHA204_PIN, INPUT); digitalWrite(ATSHA204_PIN, HIGH); digitalWrite(TEST_PIN,LOW); digitalWrite(LED_PIN, HIGH); humiditySensor.begin(); digitalWrite(LED_PIN, LOW); Serial.flush(); Serial.println(F(" - Online!")); isMetric = getControllerConfig().isMetric; Serial.print(F("isMetric: ")); Serial.println(isMetric); raHum.clear(); sendTempHumidityMeasurements(false); sendBattLevel(false); #ifdef MY_OTA_FIRMWARE_FEATURE Serial.println("OTA FW update enabled"); #endif } void presentation() { sendSketchInfo("Sensebender Micro", RELEASE); present(CHILD_ID_TEMP,S_TEMP); present(CHILD_ID_HUM,S_HUM); #ifdef BATT_SENSOR present(BATT_SENSOR, S_POWER); #endif } /*********************************************** * * Main loop function * ***********************************************/ void loop() { measureCount ++; sendBattery ++; bool forceTransmit = false; transmission_occured = false; if (measureCount >= FORCE_TRANSMIT_INTERVAL) { // force a transmission forceTransmit = true; measureCount = 0; } sendTempHumidityMeasurements(forceTransmit); /* if (sendBattery > 60) { sendBattLevel(forceTransmit); // Not needed to send battery info that often sendBattery = 0; }*/ #ifdef MY_OTA_FIRMWARE_FEATURE if (transmission_occured) { wait(OTA_WAIT_PERIOD); } #endif sleep(MEASURE_INTERVAL); } /********************************************* * * Sends temperature and humidity from Si7021 sensor * * Parameters * - force : Forces transmission of a value (even if it's the same as previous measurement) * *********************************************/ void sendTempHumidityMeasurements(bool forceTransmit) { bool tx = forceTransmit; si7021_env data = humiditySensor.getHumidityAndTemperature(); raHum.addValue(data.humidityPercent); float diffTemp = abs(lastTemperature - (isMetric ? data.celsiusHundredths : data.fahrenheitHundredths)/100.0); float diffHum = abs(lastHumidity - raHum.getAverage()); Serial.print(F("TempDiff :"));Serial.println(diffTemp); Serial.print(F("HumDiff :"));Serial.println(diffHum); if (isnan(diffHum)) tx = true; if (diffTemp >= TEMP_TRANSMIT_THRESHOLD) tx = true; if (diffHum >= HUMI_TRANSMIT_THRESHOLD) tx = true; if (tx) { measureCount = 0; float temperature = (isMetric ? data.celsiusHundredths : data.fahrenheitHundredths) / 100.0; int humidity = data.humidityPercent; Serial.print("T: ");Serial.println(temperature); Serial.print("H: ");Serial.println(humidity); send(msgTemp.set(temperature,1)); send(msgHum.set(humidity)); lastTemperature = temperature; lastHumidity = humidity; transmission_occured = true; if (sendBattery > 60) { sendBattLevel(true); // Not needed to send battery info that often sendBattery = 0; } } } /******************************************** * * Sends battery information (battery percentage) * * Parameters * - force : Forces transmission of a value * *******************************************/ void sendBattLevel(bool forceTransmit) { if (forceTransmit) lastBattery = -1; long vcc = readVcc(); if (vcc != lastBattery) { lastBattery = vcc; #ifdef BATT_SENSOR float send_voltage = float(vcc)/1000.0f; send(msgBatt.set(send_voltage,3)); #endif // Calculate percentage vcc = vcc - 1900; // subtract 1.9V from vcc, as this is the lowest voltage we will operate at long percent = vcc / 14.0; sendBatteryLevel(percent); transmission_occured = true; } } /******************************************* * * Internal battery ADC measuring * *******************************************/ long readVcc() { // Read 1.1V reference against AVcc // set the reference to Vcc and the measurement to the internal 1.1V reference #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) ADMUX = _BV(MUX5) | _BV(MUX0); #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__) ADcdMUX = _BV(MUX3) | _BV(MUX2); #else ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); #endif delay(2); // Wait for Vref to settle ADCSRA |= _BV(ADSC); // Start conversion while (bit_is_set(ADCSRA,ADSC)); // measuring uint8_t low = ADCL; // must read ADCL first - it then locks ADCH uint8_t high = ADCH; // unlocks both long result = (high<<8) | low; result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000 return result; // Vcc in millivolts } /**************************************************** * * Verify all peripherals, and signal via the LED if any problems. * ****************************************************/ void testMode() { uint8_t rx_buffer[SHA204_RSP_SIZE_MAX]; uint8_t ret_code; byte tests = 0; digitalWrite(LED_PIN, HIGH); // Turn on LED. Serial.println(F(" - TestMode")); Serial.println(F("Testing peripherals!")); Serial.flush(); Serial.print(F("-> SI7021 : ")); Serial.flush(); if (humiditySensor.begin()) { Serial.println(F("ok!")); tests ++; } else { Serial.println(F("failed!")); } Serial.flush(); Serial.print(F("-> Flash : ")); Serial.flush(); if (flash.initialize()) { Serial.println(F("ok!")); tests ++; } else { Serial.println(F("failed!")); } Serial.flush(); Serial.print(F("-> SHA204 : ")); ret_code = sha204.sha204c_wakeup(rx_buffer); Serial.flush(); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to wake device. Response: ")); Serial.println(ret_code, HEX); } Serial.flush(); if (ret_code == SHA204_SUCCESS) { ret_code = sha204.getSerialNumber(rx_buffer); if (ret_code != SHA204_SUCCESS) { Serial.print(F("Failed to obtain device serial number. Response: ")); Serial.println(ret_code, HEX); } else { Serial.print(F("Ok (serial : ")); for (int i=0; i<9; i++) { if (rx_buffer[i] < 0x10) { Serial.print('0'); // Because Serial.print does not 0-pad HEX } Serial.print(rx_buffer[i], HEX); } Serial.println(")"); tests ++; } } Serial.flush(); Serial.println(F("Test finished")); if (tests == 3) { Serial.println(F("Selftest ok!")); while (1) // Blink OK pattern! { digitalWrite(LED_PIN, HIGH); delay(200); digitalWrite(LED_PIN, LOW); delay(200); } } else { Serial.println(F("----> Selftest failed!")); while (1) // Blink FAILED pattern! Rappidly blinking.. { } } }