Mysensors PH



  • /*
    Original code created by DFRobot for their probes,
    adapted by tony.dijksterhuis@gmail.com Mysensors for the project.
    */

    #include <SPI.h>
    #include <MySensors.h>
    #include <DallasTemperature.h>
    #include <OneWire.h>
    #include "Vcc.h" // https://github.com/Yveaux/Arduino_Vcc

    static const float VccMin = 0.0; // Minimum expected Vcc level, in Volts. (0.6V for 1 AA Alkaline)
    static const float VccMax = 3.3; // Maximum expected Vcc level, in Volts. (1.5V for 1 AA Alkaline)
    static const float VccCorrection = 3.29 / 3.31; // Measured Vcc by multimeter divided by reported Vcc
    Vcc vcc(VccCorrection);

    #define CHILD_ID_PH 0
    #define ArrayLenth 10 // times of collection
    #define PH_SENSOR_ANALOG_PIN A0 // pH meter Analog output to Arduino Analog Input 0
    #define LED_DIGITAL_PIN 13
    #define Offset 0.00 //deviation compensate

    #define CHILD_ID_TEMP 1
    #define COMPARE_TEMP 1 // Send temperature only if changed? 1 = Yes 0 = No
    #define ONE_WIRE_BUS 3 // Pin where dallase sensor is connected
    #define MAX_ATTACHED_DS18B20 16

    unsigned long SLEEP_TIME = 30000; // Sleep time between reads (in milliseconds)
    OneWire oneWire(ONE_WIRE_BUS); // Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
    DallasTemperature sensors(&oneWire); // Pass the oneWire reference to Dallas Temperature.

    unsigned long lastSend = 0;
    static const unsigned long SEND_FREQUENCY = 30000; // Minimum time between send (in milliseconds)

    MySensor gw;

    float lastPhHValue;
    static const float deltaPhValue = 0.5;

    float lastTemperature[MAX_ATTACHED_DS18B20];
    int numSensors=0;
    boolean receivedConfig = false;
    boolean metric = true;

    MyMessage msgPH(CHILD_ID_PH, V_VAR1);
    MyMessage msg(CHILD_ID_TEMP,V_TEMP);

    void setup()
    {
    // Startup up the OneWire library
    sensors.begin();
    // requestTemperatures() will not block current thread
    sensors.setWaitForConversion(false);

    //gw.begin(NULL, 100, false); //deze gebruiken, 100 is de node_id, die weer gebruiken in pimatic
    gw.begin();
    //Serial.print("0;0;3;0;2;");Serial.print(LIBRARY_VERSION);
    
    pinMode(LED_DIGITAL_PIN, OUTPUT);
    numSensors = sensors.getDeviceCount();
    
    // Send the Sketch Version Information to the Gateway
    gw.sendSketchInfo("pHmeter", "1.0");
    
    // Register all sensors to gw (they will be created as child devices)
    gw.present(CHILD_ID_PH, S_WATER_QUALITY);
    
    // Present all sensors to controller
    for (int i=0; i<numSensors && i<MAX_ATTACHED_DS18B20; i++) {   
    gw.present(i, S_TEMP);
    }
    

    }

    void loop()
    {
    // By calling process() you route messages in the background
    gw.process();
    read_PH();
    read_TEMP();

    gw.sleep(SLEEP_TIME);
    

    }

    void read_PH(){
    unsigned long now = millis();
    bool sendTime = now - lastSend > SEND_FREQUENCY;
    if (sendTime)
    {
    lastSend = now;

        //    float v = vcc.Read_Volts();
        //    Serial.print("VCC = " );
        //    Serial.print(v);
        //    Serial.println(" Volts" );
        
        int batteryPcnt = (int)vcc.Read_Perc(VccMin, VccMax);
        //    Serial.print("VCC = " );
        //    Serial.print(batteryPcnt);
        //    Serial.println(" %" );
        
        gw.sendBatteryLevel(batteryPcnt);
    }
    
    // Read PH_SENSOR_ANALOG_PIN in phValue
    float voltage = analogReadAverage(PH_SENSOR_ANALOG_PIN, 10) * 5.0 / 1024;
    
    // convert the millivolt into pH value
    float PhValue = 3.5 * voltage+Offset;
    
    
    
    
    if (sendTime || abs(PhValue - lastPhHValue) > deltaPhValue)
    {
        Serial.print("    pH:");
        Serial.print(PhValue, 2);
        Serial.println(" ");
        
        gw.send(msgPH.set(PhValue, 2)); // envoi au reseau avec deux decimales
        
        digitalWrite(LED_DIGITAL_PIN, digitalRead(LED_DIGITAL_PIN) ^ 1);
        
        lastPhHValue = PhValue;
    }
    

    }

    void read_TEMP(){
    sensors.requestTemperatures();

    // query conversion time and sleep until conversion completed
    int16_t conversionTime = sensors.millisToWaitForConversion(sensors.getResolution());
    // sleep() call can be replaced by wait() call if node need to process incoming messages (or if node is repeater)
    gw.sleep(conversionTime);

    // Read temperatures and send them to controller
    for (int i=0; i<numSensors && i<MAX_ATTACHED_DS18B20; i++) {

    // Fetch and round temperature to one decimal
    float temperature = static_cast<float>(static_cast<int>((gw.getConfig().isMetric?sensors.getTempCByIndex(i):sensors.getTempFByIndex(i)) * 10.)) / 10.;
    
    // Only send data if temperature has changed and no error
    #if COMPARE_TEMP == 1
    if (lastTemperature[i] != temperature && temperature != -127.00 && temperature != 85.00) {
    #else
    if (temperature != -127.00 && temperature != 85.00) {
    #endif
    
      // Send in the new temperature
      gw.send(msg.setSensor(i).set(temperature,1));
      // Save new temperatures for next compare
      lastTemperature[i]=temperature;
    }
    

    }
    }

    double analogReadAverage(uint8_t pin, unsigned long ms)
    {
    double average = 0;
    int buffer[ArrayLenth];

    for (int i = 0; i < ArrayLenth; i++)
    {
        buffer[i] = analogRead(PH_SENSOR_ANALOG_PIN);
        delay(ms);
    }
    
    if (ArrayLenth < 5)
    {
        // less than 5, calculated directly statistics
        for (int i = 0; i < ArrayLenth; i++)
        {
            average += buffer[i];
        }
        average = average / ArrayLenth;
    }
    else
    {
        // Sort the values from small to large
        for (int i = 0; i < ArrayLenth; i++)
        {
            for (int j = i + 1; j < 10; j++)
            {
                if (buffer[i] > buffer[j])
                {
                    int temp = buffer[i];
                    buffer[i] = buffer[j];
                    buffer[j] = temp;
                }
            }
        }
        
        // take the average value of center sample
        for (int i = 2; i < ArrayLenth - 2; i++)
        {
            average += buffer[i];
        }
        
        average = average / (ArrayLenth - 4);
    }
    
    return average;
    

    }

    In file included from C:\Users\Przemek\AppData\Local\Temp\arduino_modified_sketch_990915\sketch_apr20a.ino:8:0:

    C:\Users\Przemek\Documents\Arduino\libraries\MySensors/MySensors.h:389:2: error: #error No forward link or gateway feature activated. This means nowhere to send messages! Pretty pointless.

    #error No forward link or gateway feature activated. This means nowhere to send messages! Pretty pointless.

    ^

    exit status 1


  • Mod

    You didn't define any radio interface, of course it fails the compile. That is also an old code for old mysensors library.



  • how to fix this error


  • Mod

    @szybki946 start by reading the getting started guide. By doing that you'll get an introduction to MySensors and how everything fits together. It will save you a lot of time.



  • @szybki946 said in Mysensors PH:

    how to fix this error

    Effectively you are asking somebody to complete this project for you - this is not just one simple correction. There were a few PH prob projects in the past (just use search), but you have to be careful and maybe need to convert the code from 1.5 to 2.xx. This is not difficult and there is a sticky post how to do that.

    https://forum.mysensors.org/topic/3101/ph-probe-code


Log in to reply
 

Suggested Topics

9
Online

11.4k
Users

11.1k
Topics

112.7k
Posts