Yet another way to get longer battery life for the nRF24L01+
-
I was just noticing that for the CC1101 transceiver TI uses the TPS62730 as a neat trick to make it draw less current while in TX or RX, and I presume that same trick might also work for the nRF24L01+:
Reduced Battery Current using
TPS62730
The TPS62730 [26] is a step down
converter with bypass mode for ultra low
power wireless applications.
In RX, the current drawn from a 3.6 V
battery is typically less than 11 mA when
TPS62730 output voltage is 2.1 V. When
connecting CC1101 directly to a 3.6 V
battery the current drawn is typically 17
mA (see Figure 1)
In TX, at maximum output power (+12
dBm), the current drawn from a 3.6 V
battery is typically 22 mA when TPS62730
output voltage is 2.1 V. When connecting
CC1101 directly to a 3.6 V battery the
current drawn is typically 34 mA (see
Figure 2).
When CC1101 enters SLEEP mode, the
TPS62730 can be put in bypass mode for
very low power down current
The typical TPS62730 current consumption
is 30 nA in bypass mode.
The CC1101 is connected to the battery via
an integrated 2.1 Ω (typical) switch in
bypass mode
http://www.ti.com/product/TPS62730
The nRF52 has this kind of DC-DC converter already built into the chip itself, and it works quite well! I'm especially interested in whether it would work for LoRa modules, which tend to draw a lot of current because of their low datarate.
I suppose you could also use it for the MCU and maybe get some benefits that way as well.