@Samuel235 said:
Just one of many ideas, the possibilties are endless. I'de always go for RGB leds over just white, allows for more customisation while able to still give you the same white as the white leds.
... unless, as in my use case, colors are not needed.
I'm too stingy to pay for the unused dry powder!
@yoshida hi!
Im not sure where you get that #9 should be A5? Looks right to me. The pin is connected to pin 9, and that is D3.
For a rotary encoder, it depends on your input - but don't you want an analog signal in? In that case you use the analog pins.
Edit: offcourse, if you use a module converting it to digital like described in the the build section you use a digital pin.
@NeverDie Thx for appreciating the work done. There will also be an open source part in the future. When and how extensive the open source part will be, remains to be seen. The release of certain information (block diagram, ..., in this post) is related to those open source parts.
There are some OBD solutions, however most of them (in my experience) give back low frequency data put by the car manufacturer on the OBD-bus (CAN, ...). Therefore transients evolving directly from the battery could only be recorded if the manufacturer sends those data accordingly on the bus. Due to the small bandwidth(also because of other car data that have to be sent, ...), such battery data are sent more often once per second or less. Fast battery events (i.e. cranking events, ...) are therefore imperceptible. Unless the manufacturer processes the fast events and then sends them (once per second or less), which is very unlikely if the manufacturer does not market this feature itself. Third parties devices for high frequency sensing costs several hundreds dollars.
In my experience, important battery states (especially the fast ones) are recorded by measuring and processing corresponding data directly on the battery.
I agree with you about the limits related to the communication over Bluetooth. But i think Bluetooth 5.0 will improve a lot. However, WiFi will always remain an important option due to the high data throughput. The combination of both (BLE & WiFi), especially with regard to energy consumption, will gain in importance.
I have already published all the documentation, on my website, GitHub and openhardware.io
For now I leave the node as finished.
SmartHome: Wireless LED RGBW Controller – 00:55— giltesa
@krisztian
Hi krisztian,
the singleLED board - as its name suggests - features only one LED output. If you want to have a setup with multiple LED strips you need to design a board with multiple outputs. I have already designed a board with 4 outputs, but I haven't built it.
In terms of software you need to register multiple sensors in your program like this:
#define numCh 4 //the number of outputs
const byte ledPins[] = {9,6,5,3};
byte ledLevel[numCh];
boolean ledDimWay[numCh];
//in the setup function request the dim levels from the gateway
for(byte i=0; i<numCh; i++) request(i, V_DIMMER);
//in the presentation function register multiple lights
for(byte i=0; i<numCh; i++) present(i, S_DIMMER);
//if you receive a signal, you need to check for the sensor id
setLED(message.sensor, requestedLevel);
//to set the LED level (function: setLED) you need to use the sensor id to determine brightness and pin
//Fade LED to set level
int delta = (level - ledLevel[child]) < 0 ? -1 : 1;
//Write to LED
analogWrite(ledPins[child], map(ledLevel[child],0,100,0,255));
I will probably publish the whole code once I have built and tested the 4LED controller (i call it "MySensors rainbowLED")
Hope I could help you
ThetaDev
Thanks for the reply. I am not looking to use an LCD, although that may be the best solution. For now, I plan on creating a simple set of LEDs and buttons.
I have looked over the code, and was wondering which part of the code is retrieving the status of a sensor? What if I have multiple motion sensors, how would I retrieve each unique value?