Solar Powered Mini-Weather Station



  • @floris Thanks for sharing.

    Do you use the battery provided with the solar panel ?

    Thanks



  • @Totche, the original 3v7, 1000mAh lion battery is tucked under the circuit board. You can see the arch of the plastic cover toward the bottom of the picture on the left, just below the DHT22. It is connected to the circuit with the black and red wired connector so it can easily be removed when working with the device.



  • Hi, did you feed the NRF24L01 directly from the 3.7 V battery? The specs are alowing 3.6 V max?!? And you are taking about a maximum output of over 4 V of the battery.
    That sound not healthy for the NRF.



  • @Andreas-Maurer You can connect the NRF24 on the VCC out from the arduino. because he used an arduino nano pro on 3.3 volt. and the arduino can handle voltages from 3.3 to 12 DC.



  • Hi, I have my weatherstation up and running. The only problem is my rainsensor. It's totally not accurate. Do you have the same?

    Floris



  • @floris, you have to adjust the sensitivity of the rain sensor. I splashed some water on the sensor pad and used a small screwdriver to adjust the potentiometer on the interface board until it triggered to my satisfaction. It took a few iterations to get it to trigger at the level I was looking for.



  • @Salmoides
    How is this sensor performing? I assume it has to be mounted where it can receive direct sunlight for charging the solar panel. Do you have problems with sunlight heating the enclosure and elevating temperature readings? I intercept readings from my neighbor's 433Mhz outdoor sensor and the temperature soars when the sensor is under direct summer sunlight.



  • @Salmoides great thread and project

    Was trying to follow the wiring on the back side of the board to wire my project and was wondering how you wrap the wires around the posts sticking through the board for soldering.
    Also is there a wiring diagram?



  • @5546dug Wire wrapping is done with a wire wrapping tool, it is done in lieu of soldering and can be easily undone or 'unwrapped'. It was very common for prototyping in the past.



  • @Dwalt Thanks for info but the slant I get from you is this is the old way and now it is just plain soldering.
    I also see wire size is an issue.


  • Hero Member

    @Salmoides said:

    Then I found this.

    SolarLight.jpg

    It’s entitled “16 LED Solar Power Motion Sensor Security Lamp Outdoor Waterproof Light” (http://www.ebay.com/itm/271693521438) that you can get for $9.00. I now had a $21 weather station ready to be built.

    Taking apart the lamp, I removed the LED panel (worth at least $2.00) and the control board (this has some good stuff on it like a PIR, a light sensor, and the battery charging circuitry, but its use is well beyond my skills), and put them away for another project.

    @Salmoides I mesure less than 1 V at the solar panel wires, which cannot power up the regulator for the arduino.

    Do you have the same mesure ?


  • Hero Member

    @epierre said:

    @ mesure less than 1 V at the solar panel wires, which cannot power up the regulator for the arduino.

    Do you have the same mesure ?

    I have a couple of these units as well and just checked one. It's a cloudy day, but under a bright light it reported 4.3V at the solar panel wires. You might have a bad unit.

    Cheers
    Al


  • Hero Member

    @5546dug I am using wire wrap as well (well, I am old...). The upside of wirewrap is that it does not require electricity, very zen like, you can't make fatal mistakes and you can rescue or replace an arduino without a reflow station. the downside is that there is a limit to the currents (its not bad, but don't try to wire 220v, 3A using wire wrap...), there is a limit to the amount of wires that go to the same post and at times it is slower than soldering (for someone who is practiced). it is very very good for prototyping.


  • Hero Member

    @Sparkman strange for I tested again and this was good...



  • @Salmoides I have tried compiling this code you supplied in the thread prior to uploading to the promini, but it has an issue with the bmp180 code , it cannot read the sea level pressure. I see you set your altitude at 221 meters but I am not able to comprehend the error code on line 101.
    enclosed is the screen shot of the issue.
    I use ver 1.4 and lib 1.4



  • Screenshot (53).png
    So dumb of me to forget screenshot



  • just not sure where the readSealevelPressure(altitude) parameter is found
    I donot see it in the sketch and cannot find it in github



  • It's defined in the Adafruit_BMP085 library .cpp file. Did you include the library?



  • I used the supplied code from @Salmoides first reply in this thread.



  • Edit

    @Pieter-Jan-Stiers , I have tried various combinations of the " include " line in the setup for BMP085 sensor part and it will not compile.

    I tried adding the file Adafruit_BMP085_Unified-master.h but the sketch said no such file existed.
    However I did download and extract from github and put it in the file ....users/documents/arduino/libraries, I see it in the IDE but that is all
    see screen shot at the moment I have it commented out and sketch still does not find read SealevelPressure

    Any ideas? As I said I am using the sketch from the first post in this thread from @Salmoides

    Do I need to create in setup the line

    include <Adafruit_BMP085.cpp>

    Screenshot (56).png


Log in to reply
 

281
Online

6.7k
Users

7.6k
Topics

80.4k
Posts

Looks like your connection to MySensors Forum was lost, please wait while we try to reconnect.