CNC PCB milling



  • @neverdie I've a PS with the same parameters. it is enough.


  • Hero Member

    I don't have much optimism that the cheap-ass power supply that came with the kit can be repaired (well, not by me anyway).

    I ordered a 6amp one as a replacement, just to have a little more headroom:
    https://www.amazon.com/gp/product/B01AJQ9G2C/ref=oh_aui_detailpage_o01_s00?ie=UTF8&psc=1

    It may turn out to be cheap-ass also, but I can get it tomorrow, so I'm rolling the dice.

    If that burns out too, then there's this one, which looks more beefy and would be my first choice, but will take a week to receive it:
    https://www.amazon.com/gp/product/B01J19G00E/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1


  • Hero Member

    Dang. I cancelled the order, as I'm not sure whether its 5.5mmx2.1mm barrel jack will fit or whether a 5.5mm x2.5mm is required.

    Looks as though the barrel on the woodpeck is 2.5mm inside diameter....


  • Hero Member

    Powering it from a variable power supply, it apparently works. Here's the etching on a piece of plywood:
    0_1513906179776_logo.jpg
    I watched the current being drawn, and it appeared to always be below 1 amp. The variable power supply can supply up to 5 amps, so no problem there as far as I can see.

    The etching that it did was a bit weird: deep cuts in the inside diameter of the P's, but only faint cuts just outside. The R was barely even touched at all. The surface doesn't feel sufficiently non-flat to account for that.

    Ideas as to what's going wrong there?


  • Hero Member

    Here is a contextual photo:
    0_1513907110706_context.jpg
    The clamps are holding the board very securely.


  • Hero Member

    After thinking about it, my hypothesis is that the feedrate is too high. I have it set to 1 in ChilliPeppr. I think maybe it comes down rapidly to the programmed height, but if it meets resistance then it skips some motor steps. Since it's open loop, it doesn't know. Then it dwells at that depth until it picks up the bit and relocates. I'll try a slower feedrate and see if it makes a difference.


  • Hero Member

    Maybe the bit is too dull as well. It's one of the freebies that came with the kit.


  • Hero Member

    Also, what is the preferred way to tighten the ER11 chuck? So far, I did it just by hand, which seems to have been good enough. However, maybe a better practice is to give it a 1/4 turn further tightening using wrenches after that? How are others here approaching that?



  • @neverdie for er11 fastening you should use two wrenches.

    if you loose steps during the milling, then with the given feed rate / depth / spindle speed combination the cnc / spindle / steppers are not powerful enough.

    if you wood milling depth is not constant then:

    • the wood is not flat
    • the cnc bad is not flat
    • the cnc x axis is not horizontal

    my availability for the next couple of days will be quite limited, so I wish you good luck for experiencing the router and for the first PCBs!



  • @neverdie said in CNC PCB milling:

    Also, what is the preferred way to tighten the ER11 chuck? So far, I did it just by hand, which seems to have been good enough. However, maybe a better way is to give it a 1/4 turn further tightening using wrenches after that? How are others here approaching that?

    +1 for the wrench, mostly because of vibrations that could unscrew it. No need to pull a muscle on it as it is tapered and has big contact surface



  • @neverdie If it is anyway similar to a Router, it should have a locking pin to hold the spindle, or a second nut against which you tighten the collet. Do not overtighten, just enough to bite the shaft, otherwise you either damage the shaft or more seriously shatter the collet, it should be just enough to be a firm clamp to ensure grip, the collet will do the rest.
    Not a user of these CNCs but I would guess the same principles apply... Just my 2c...


  • Hero Member

    @andrew

    Have a Merry Christmas!

    Also, I'm not going to dwell on etching wood . It was just my first attempt at etching anything, and I thought wood might be a little softer.

    I suppose the next step is to have a go at auto-leveling on a PCB rather than perfect the machine's etching of plywood. Indeed, PCB's may turn out to be easier, as the resistance to downward motion (especially after auto-levelling) should be more uniform.


  • Hero Member

    Meh, I think I know what happened now. If the z-axis ever skips a step in downward motion--for whatever reason--then the rest of the etching is screwed from that point forward, because the higher height then becomes the new "zero" for the entire remainder of the etching since the depth control is completely open loop. So, the first spot in the sequence that isn't at proper depth would be where the error occurred, creating a persistence of the error from that point forward in the etching sequence.



  • @neverdie If the material is parallel to the cutting plane, the cut depth should be constant. Might I suggest doing same experiment using auto-level.... Wood is easier on the bits, plywood less so but still less abrasive than FR4...


  • Hero Member

    @zboblamont said in CNC PCB milling:

    Might I suggest doing same experiment using auto-level....

    Is there an auto-level that works on wood? I thought it assumed a conductive surface, like on a blank copper PCB, to facilitate the auto-leveling mapping process, so that it knows when contact is made and therefore the height at each touch point.



  • @neverdie Tinfoil?



  • @neverdie I should explain my thinking... I do not think your wood experiment made sense. You assume your sensors and the wood are parallel, this need not be true. Plywood is generally less than 0.3mm out of true, even if you could zero the 4 corners with foil or similar it would give you a plane on which to see if the original trial was misleading.


  • Hero Member

    @zboblamont said in CNC PCB milling:

    @neverdie Tinfoil?

    You get an A+ for creative thinking. I suppose extra wide foil tape might work.



  • @neverdie I was thinking kitchen foil pressed flat as possible to the block surface, whatever works...


  • Hero Member

    This is a good video for how to auto level in ChiliPeppr:
    Auto-Level a PCB in ChiliPeppr – 21:33
    β€” John Lauer

    So, with that as inspiration, I plan to connect the probe to A5 on the woodpecker, and the PCB surface to GND. He soldered his ground wire to the PCB, so I guess I'll do the same, at least for now.

    I'll use tape to secure the PCB to the sacrificial board underneath.


  • Hero Member

    I've confirmed that A5 and GND work correctly for the auto-leveling.

    However, Chillipeppr strangely defaults to probe a much larger area than is needed for auto-leveling, so I need to figure out how to reduce the upper and right-hand boundaries of the probing area:
    0_1513977914047_too_large.png

    Otherwise, it runs the risk of not even hitting the PCB if it gets too far out.


  • Hero Member

    Nailed it!
    0_1513979933006_just_right.png

    Well, further progress will have to wait until I can move the CNC to the garage or outdoors, so that I don't fill the house with toxic fiberglass particles (Thank you @executivul for pointing that out, and sorry I butchered your name earlier. I didn't mean to.)



  • @neverdie no problem, I got used to it since I'm using such a weird nickname, the good part is it's always free to register on any forum so all I have to remember is the pass.

    I'm really excited about wet milling, it's freezing down here and not having to have windows open for the modded vacuum cleaner it's a treat. The trick is to use a solution with higher surface tension then water, but not too thick or it will gather around the mill as a small tornado and start splashing everywhere. You can use soap, shampoo, dishwash, carwash, etc. Start at 1:1 water mix and add more water if it tends to gather around the spinning bit. It's better to pour it slowly on the board and spread with your finger (use a syringe) than to spray it as not to make foam. Also try using a clear shampoo to better see what's milling below the liquid. A piece of flat plastic, acrylic, lexan, plexiglas, whatever, doublesided taped to the wood spoilboard is a must unless you leave a large margin between the actual milling and pcb edge liquid will spill and will swell the wood. Have a roll of paper sheets nearby and a garbage bag open. Always use glasses when operating the machine. I made a "fence" out of some polycarbonate sheet to contain any eventual splashes which occur mostly when drilling through the board, normal engraving behaves and doesn't splash at all.


  • Hero Member

    Given that the goal is to get 6mil isolatioin routing, what cutting depth should I set in flatcam? 0.05mm?



  • @neverdie I have been kind of following this topic, but don't have a CNC mill, but wouldn't the thickness of the copper clad on the board be your depth?


  • Hero Member

    @dbemowsk said in CNC PCB milling:

    @neverdie I have been kind of following this topic, but don't have a CNC mill, but wouldn't the thickness of the copper clad on the board be your depth?

    Makes sense to me. Well, doing that it would be 0.01mm. But since this isn't a perfect process, it likely needs some added depth to guarantee it's removed. The effective tool width gets wider the deeper you cut, so in some sense I suppose there's that as an added constraint on how deep you can cut before it becomes more than 6 mil isolation. We could try to arrive at an answer analytically from first principles only, but I thought it might be easier to just ask what depth others who are doing this successfully are using.



  • @neverdie See what depth you need to go with that bit to get 6 mil routing, and that will be your max. I would think that would be more than 0.01mm, but I haven't seen your bit, so I don't know.



  • @neverdie you should use one depth, regardless of the trace width. for me 0.05mm worked, see my shared settings above. you should decide the isolation width, this is the main property for the given config, but you should stick for one milling depth only. if the requires isolation width is bigger than the tool width at a given depth, then it will use multiple rounds to reach the given width, but still, with one milling depth.


  • Hero Member

    I'm stuck. I converted my gerber to gcode using flatcam, and imported it into Chilipeppr:
    0_1514058048699_stuck.png
    On the one hand, it seems to have gotten the dimensioning right, as indicated by the Y1.48in and X1.43in. However, the grid that it's showing is out of sync with that. Each square on the grid is 5mm. It's as though Chilipeppr thinks the entire design fits easily inside a 5mm square, and so when I attempt to do the autoleveling, it comes out completely wrong.



  • @neverdie said in CNC PCB milling:

    I'm stuck. I converted my gerber to gcode using flatcam, and imported it into Chilipeppr:
    0_1514058048699_stuck.png
    On the one hand, it seems to have gotten the dimensioning right, as indicated by the Y1.48in and X1.43in. However, the grid that it's showing is out of sync with that. Each square on the grid is 5mm. It's as though Chilipeppr thinks the entire design fits easily inside a 5mm square, and so when I attempt to do the autoleveling, it comes out completely wrong.

    you can mark the zero point in the pcb designer tool before you export the gergbel, or in flatcam, during the post processing. if you do not define it, then maybe the given zero point could have some "offset" to the effective design. it is not problem, but it could make your life easier if your zero is e.g. at the pcb's corner.
    if you don't want to update the files, then in chilipeppr you can update the probe area to not start from 0,0 but from a given offset.


  • Hero Member

    Thanks! I don't know why, but somehow that fixed the problem:
    0_1514071420069_gcode2_autolevel.png
    πŸ™‚


  • Hero Member

    I found these copper clad boards that seem to be made out of bakelite (?) rather than fiberglass. So, hopefully not the same level of toxic dust concern as with FR4's.

    I double sided taped the non-copper side:
    0_1514073784631_bakelite1.jpg
    and soldered a ground wire on the copper clad side:
    0_1514073810947_bakelite2.jpg

    Now I'm ready for autoleveling and then my first PCB etch.


  • Hero Member

    Here are the results of the autoleveling:
    0_1514079156036_autoleveling.png
    For some reason it's hard to read some of the numbers.



  • @neverdie It looks like everything in the top right corner is above the level bed surface. which puts it above the grid that is shown. Looks like the bed is tilted.


  • Hero Member

    @dbemowsk Fortunately the auto-leveling should render it a moot issue.


  • Hero Member

    LOL, except that unfortunately it did not:
    0_1514080543041_etching1.jpg

    OK, my bad. I hadn't sent the auto-leveled g-code to the workspace (I had thought this would be done automatically, but no), so this picture shows what would happen without auto-leveling.

    I've made the change and am now re-running the job with the auto-leveled g-code.



  • @neverdie Looks about on par with your final matrix, only it is following the grid and not the auto leveling values.


  • Hero Member

    So, I re-ran the job over the same area with the g-code modified by auto-leveling, and this time I got a better result:
    0_1514083159570_etching2.jpg

    So, now I'll try it on a fresh area of the PCB, after doing a new auto-leveling.


  • Hero Member

    Judging from the looks of the photo directly above though, it looks like quite a bit of copper wasn't removed where it needed to be. I'm guessing I will need to:

    1. etch to a deeper depth; and/or,
    2. use a finer mesh for auto-leveling; and/or
    3. ???


  • Etch 0.1mm. The groove between tracks also helps with soldering. I currently use 0.1mm and even 0.15 when in a hurry.



  • @neverdie
    The last photo looks like the tip is missing from the cutter?


  • Hero Member

    @rmtucker Good catch! Here it is in contrast to a new one:
    0_1514124264773_broken.jpg

    I'll replace it with the new one.



  • @neverdie
    Just for future reference i would use a duff cutter for autolevelling then change to a good cutter to cut the job after resetting the z0.
    It is so easy to smash the front of an engraving cutter when using this method for autolevelling as the machine takes a little time to stop after touching the pcb.
    Just my advice anyway☺


  • Hero Member

    @rmtucker said in CNC PCB milling:

    Just for future reference i would use a duff cutter for autolevelling then change to a good cutter to cut the job after resetting the z0.

    What's a "duff cutter"? Did you mean "dull cutter"?



  • @neverdie
    Yes sorry a used oneπŸ˜‰


  • Hero Member

    @rmtucker Thanks! Makes sense to me. I'll do it that way.


  • Hero Member

    Argh. I ran the job, and the first cut went great. All subsequent cuts though didn't penetrate the surface:
    0_1514131937250_etch2.jpg
    Afterward, when I checked the zero on z, I found that it was off by 0.049. That explains it, since the cut-depth was 0.05.

    I'll re-zero and try running the same job again.


  • Hero Member

    That made a much better result:
    0_1514134150665_etch3.jpg
    It corresponds to this as the actual PCB:
    0_1514134183073_pcb3.jpg


  • Hero Member

    However, what's telling is that it obliterated the traces on either side of a 6 mil separation:
    0_1514134391307_etch4.jpg
    This is how it should look instead:
    0_1514135454019_jumper.png
    0_1514134628617_pcb4.jpg

    So, what happened?

    My current hypothesis: the first cutting sheared 0.049mm off the tip of the blade, making it wider than it should be. Then, after re-zeroing, the wider blade cut too wide as it cut the traces for the solder jumper.

    Is that reasonable, or is there a better hypothesis?

    If it's true, then what do I do about it? Perhaps use a higher quality bit than the freebie that came with the kit?

    Actually, I'm not even sure what the dimensions were on the freebie. It wasn't labeled. Perhaps it was too wide to begin with.


  • Hero Member

    Well, to explore this more, I think I'll create a test board consisting purely of a few solder jumpers. That way I can put the focus directly on the 6 mil issue and won't be wasting time on etching that's unrelated to that.


  • Hero Member

    Doing just a single solder jumper, with the same bit, and autoleveling every 1mm, the result is:
    0_1514143618998_etch5.jpg
    which is pretty close, actually. Looks like maybe the bit is a little too wide, or else there's runout which is making it appear wider than it actually is.

    I'll try it with a fresh bit next and see if it improves.


  • Hero Member

    Well, that went horribly:
    0_1514145362189_etch6.jpg
    and I have no idea why:


  • Hero Member

    I tried again with the same bit, after removing and re-inserting it. Got a better result this time:
    0_1514147487748_etch7.jpg

    Unless someone has suggestions on how to tweak this, I think that may represent approximately the best this CNC can do.


  • Hero Member

    In truth, though, I think it may be a flawed gcode algorithm:
    0_1514147871026_flawed_algorithm.png
    Instead of two separate cutting passes through the center section, one would do, and would produce a better result.

    How to tweak flatcam to do that? I probably haven't configured flatcam correctly. i.e. user error.



  • @neverdie said in CNC PCB milling:

    Actually, I'm not even sure what the dimensions were on the freebie. It wasn't labeled. Perhaps it was too wide to begin with.

    Maybe this is where your problem lies.
    How did you write the g-code without knowing?
    Too many variables here wich could give you these results.
    The bigger tracks,Are they measuring the correct width with a vernier after you have cut them?


  • Hero Member

    I assumed the width on the freebies was 0.1mm, because that's what was advertised on Jack's posting for the machine. However, I don't know how to verify that, so the uncertainty comes in whether Jack actually delivered what was advertised or slipped in something else. I chose to give Jack the benefit of the doubt.


  • Hero Member

    If I were to enter a wider tool diameter of 0.155mm (instead of 0.1mm) into flatcam, I think I can coax flatcam into generating better g-code for this situation. I'll do that and then post the results.


  • Mod

    @neverdie have you verified isolation between the parts? The cut is good?


  • Hero Member

    No improvement really:
    0_1514155765889_etch8.jpg

    I think this means that the effective cutting width is actually greater than that, either from the bit itself or from runout or from who knows what else.

    Probably nothing I can do about runout, except buy a different/better motor.

    I'll have to wait for the etching bits from Aliexpress to try what is maybe (?) a proper 0.1mm etching bit. Like I say, I have no way of judging whether the freebies that came with the kit really are that or not, as I have nothing to compare.

    By the way, my reason for picking the 0.155mm tool width in flat cam is that it produces this g-code path, which should have preserved more of the copper pad where it was being obliterated:
    0_1514156432764_better-gcode.png



  • Yes you can. Get the gcode I've posted above, adjust for your feedrate, autolevel it in cp and give it a go. Really curious about the results.


  • Hero Member

    @mfalkvidd said in CNC PCB milling:

    @neverdie have you verified isolation between the parts? The cut is good?

    Good question. I have doubts about how well I could measure it using calipers. However, maybe if I put the board onto a flatbed optical scanner, which would have a known DPI, I could measure the actual cut width with reasonable accuracy. I haven't done that yet, though.



  • @NeverDie Using traces one next to other at known distance you can determine the exact width of the engraving for a wanted depth of cut. I know you don't want to mess with gcode, but it's simpler than you think. Please look at the code: you have init (g92 for setting zero, g21 for mm, etc) you set the feedrate in mm/sec, you have a few movements (g0) a "dwell" to pierce the copper for 0.5seconds (g4) then some cutting moves (g1) all have absolute cartesian coordinates. Eg you're at (0,0) then g1 x0y10 means travel at (0,10) move only the y axis 10mm to the back of the machine, g1 x0.1y10 means move 0.1mm to the right, etc.
    You have the whole script posted above, set your feedrate the same as you set in flatcam, and set the depth in the first z-0.1mm line, maybe you want 0.05mm for eg. After editing the file run it in cp with autoleveling and post the results.


  • Hero Member

    @neverdie said in CNC PCB milling:

    @mfalkvidd

    Oh, sorry, I realize now you were asking something else. No, I haven't verified that yet. This is all just early attempts. Good question though.


  • Hero Member

    @executivul said in CNC PCB milling:

    Using traces one next to other at known distance you can determine the exact width of the engraving for a wanted depth of cut.

    OK, I think I see what you mean. In other words, when the two cuts just barely bleed into one another, then one can deduce the width of the cut as being the absolute width between the absolute coordinates of the lines it's trying to cut. Makes sense. I'll give it a try. Thanks for the suggestion. πŸ™‚


  • Hero Member

    Good news. I just received my model 2 bits from Aliexpress. Model 2 is 20 degrees with a 0.1mm tip. I compare it here to the freebie bits from Jack:
    0_1514161170351_bits_compare.jpg
    Model 2 is on the right, and Jack is on the left. Looks like the angle is wider on Jack, which I presume (?) means that the tip is wider than 0.1mm.


  • Hero Member

    Well, I thought the model 20 would do better, but it actually did worse:
    0_1514162531708_model20.jpg
    It does seem to cut smoother lines though.


  • Hero Member

    I also received model 6, which is the variety pack that includes a 10 degree bit with a 0.1mm angle. Should I give it a try? I've read that they're prone to create flying shrapnel. Anyone here have experience with them? If it doesn't blow up, it might be just the ticket for doing this cut.


  • Hero Member

    I just now tried the Model 10:
    0_1514166455895_model10.jpg
    Rougher edges, but it didn't decimate the pads as badly as the model 20.


  • Mod

    @neverdie sorry for being unclear. I was thinking of just using a multimeter in continuity mode to verify that there is no connection between parts that should have no connection.


  • Hero Member

    Merry Christmas, @executivul
    Here is the output of your script using a Model 20 bit:
    0_1514220979736_executiveval1.jpg



  • @neverdie Marry Christmas!
    What feedrate did you use? (F parameter) and what engraving depth? (G01 Z-0.1?)
    The jagged edges make me believe your feedrate is a bit high for the used rpm. You can run the first gcode to determine the best feedrate, or just use something low like 200mm/min and maybe a little deeper engraving.
    It seems that your engraving is about 0.25mm wide, the 0.1mm is clear, 0.2mm is clear, 0.3mm is partially clear, from 0.4mm onwards you see the spacing between passes.


  • Hero Member

    @executivul said in CNC PCB milling:

    G01 Z-0.1

    I did it again with F200 this time:
    0_1514228662588_executiveval2.jpg

    Doesn't look like the autoleveling is working so well, even though I had it probe every 2mm.

    I think I may try covering 100% of the back of the pcb with tape. Maybe spacing it out has created this kind of artifact.

    Not that it matters, but here's how it looks in ChiliPeppr:
    0_1514229052919_cp.png


  • Hero Member

    @neverdie Oops. It was F1400.00, which is what your script had. It must have overridden the F200 I had entered manually before running it.


  • Hero Member

    Here it is again, after I modified @executivul script to be F200:
    0_1514230978381_F200.jpg


  • Hero Member

    Here's something I've noticed. Before running the auto-leveling, I run a test probe and then zero everything out when it makes contact. After running auto-leveling, if I run the test probe again, it generally reads about 0.05 higher than where I zeroed it out after the first test probe before the auto-leveling. Meaning?


  • Hero Member

    Wow! Here's Jack's bit at a cutting depth of 0.05 and a feedrate of 200:
    0_1514233434394_jacksbit.jpg

    Seems to blow away the Aliexpress Model 20.


  • Hero Member

    Anyhow, I'm not sure what all this means, but 6mil isolation milling seems like a stretch, unless there's more that I can do to get there.

    What's a conservative number for mill isolation that I can count on getting without having to fuss over it? @executivul was getting 8mil. @andrew was getting 6 mill. So, maybe I can bank on getting 12 mill for sure without much effort such that it "just works"?



  • @NeverDie
    The last bit tested is under 0.1mm wide. WOW!
    Remember to:
    -pre run: set the autolevel probe limits and a speed of 25mm/s
    -run the probing: and DON'T redo Z probing after autolevel, it messes things up, use the same bit for probing and engraving.
    -post run: "send autoleveled gcode to workspace"
    Go slower, 100-150mm/min, afterall you don't need 6mil traces for a huge board so time is not an issue here.

    PS. try some water/shampoo mix, it kinda' helps with engraving, cooling, lube, I don't know.

    PPS. I've moved to opencncpilot lately (last 2 boards), free on github, a short tut on the tube, it has a great feature that is to break long moves in 5mm segments, works better for bowed/wavy boards.


  • Hero Member

    @executivul Do you cut everything in one pass, or do you use multiple passes (each pass at a deeper depth)? Flatcam supports multiple passes, though I have been using only 1 pass.


  • Hero Member

    @executivul
    Thanks for the tips. Here is Jack's bit again, this time at F100. Even better!
    0_1514236520133_F100-3.jpg


  • Hero Member


  • Hero Member

    Time to see whether this machine can cut the mustard or not. I just did a 5mm autoleveling on the following:
    0_1514243813034_top_coincell_th_v023.png

    and now I'll try cutting it using Jack's bit.


  • Hero Member

    Here's the result:
    0_1514258043934_mustard.jpg
    The above was cut at a depth of z=-0.1, and still not all the paths cut completely through. Yet, In the middle one of the traces got obliterated.

    I'm afraid I'm unlikely to make it work at the resolution that I'm able get from the fab. It's close, but no cigar. So I think it's better suited for earlier prototyping work that's not so optimized for space. For that it might be very handy. Then I can both cut deeper and also not worry about trace obliteration.


  • Hero Member

    By the way, do any of the programs have built-in verification after the cutting, where it can probe to verify that the trace is throughly cut (i.e. no continuity with ground)? Seems like it should be easy to do, at least in theory, by using a method similar to the probing for auto-leveling, except probing each track instead.



  • @neverdie Congrats for your result, I use a "copper pour" all over the board, that makes it pass at least 2 times, once for the track and once for the pour isolation. I never mess with flatcam's multiple passes, but I believe you can get the same results. What you see in the middle are copper "silvers" that is copper left behind between traces.
    From the last picture of the width test is seems your bit is engraving 0.1mm wide.
    Try to use OpenCNCPilot instead of Chillipeppr and set the lines to be split at 1-2mm lengths and probing each 2-3mm. That should make the engraving depth more uniform.
    I see a couple copper flakes, maybe go even slower than 100? And give it a light sandpaper with 1000 grit or a scotchbrite sponge and some abrasive detergent for dishes?


  • Hero Member

    @executivul Thanks!

    For the convenience of others reading this thread, here's a quick youtube:
    OpenCNCPilot relased - new Autolevelling GCode Sender for GRBL – 03:28
    β€” martin2250

    I'm surprised to learn that not all auto levelers do it that way, because it seems like the only right way to do it. I'll give it a try.


  • Hero Member

    Well, for some reason when I connect using OpoenCNCPilot, it turns the spindle on at maximum speed. I tried turning it off with the command 'S0', but it had no effect. So, I manually disconnected the wire that powers the spindle. Surely, there's a better way?

    Anyhow, after doing that, I notice that the motors are making a really loud shrill sound, even though they're not moving. So, something is definitely FUBAR the moment I connect.

    I had to disconnect and then connect using chilipeppr to have it all return to normal.

    Maybe @andrew can try it? Perhaps there's a workaround that's not self-evident to me, but perhaps would be to someone else.



  • @neverdie OpenCNCPilot needs latest grbl 1.1f


  • Hero Member

    OK, I'll resume the search for my dragon....

    Meanwhile, I should be receiving my CNC drill bits and routing bits (to cut the board outline) fairly soon. Will I be using Chillipeppr to do those tasks (I'm guessing so) or something else?



  • @neverdie I have an idea, why don't you open the gcode in Opencncpilot, simplify it, split long moves, save it and then open in chillipeppr and do the probong and actual milling?


  • Hero Member

    @executivul Brilliant idea! Simplifying, the line count went from 3609 to 3608. Converting arcs to line segments had no effect. Then, splitting every 1mm, it went to 4114. I copied it into a new file, and now I'll see how it runs using chilipeppr.


  • Hero Member

    Results look much better this time:
    0_1514394977526_better.jpg
    Using Chilipeppr, I probed every 3mm and then let it rip. As before, it was cutting at z=-0.1 and a feedrate of 76.2 (the feedrate wasn't a conscience choice but rather just what flatcam gave me, for whatever reason).

    The good news is that it doesn't have the blatantly obvious trace obliteration that it had the first time. All in all, it looks like a definite improvement. πŸ™‚



  • @neverdie Seems like it's getting better, still some traces in the middle are hairthin, maybe increasing tool size in flatcam a tad? like 0.12mm so it lets the tracks be wider. Bare in mind this is a prototyping machine, I use mine for low batch home automation boards, under 20 boards of the same kind, at the price of a blank pcb I can buy 10 for the price of one fab made 100x150mm, not to speak of wait time.

    After you are satisfied with the board is time to get some plumber's paste for soldering copper pipes, that is used for tinning, or maybe you can find some liquid tinning solution, but that's more expensive here, I use the paste.

    Then some soldermask and some uv led strips to make an exposure unit and there you have your own pcb fab at home 😎


  • Hero Member

    @executivul How much overlap in flatcam are you using? I've been using zero. Would changing it to something non-zero help, or is it irrelevant?



  • @neverdie I never do multiple passes, so overlap is irrelevant to me...


  • Hero Member

    When I probe at 2mm, it often randomly fails with messages like this:

    Moving to {x:12,y:28}
    probe failed, clear controller alarm before resuming
    Paused
    Working on probe for {x:12,y:26} Found lowest Z:0.17499999999999996
    Paused
    

    What is causing these "probe failed" to happen? And how exactly am I supposed to "clear controller alarm"? It always seems that I need to disconnect from the serial port and then reconnect to get any further movement. But if I do that, it clears the x,y,z positions, effectively preventing any kind of sensible resumption. 😞


  • Hero Member

    Argh, it just happened again. This time when doing 3mm probing.

    Moving to {x:12,y:27}
    probe failed, clear controller alarm before resuming
    Paused
    Working on probe for {x:12,y:24} Found lowest Z:0.23000000000000004
    Paused
    

    How does it even decide that a probe error has happened?



  • @neverdie timing racing condition is f*king spjs, ugly hack is to try to increase probing starting height from 0.5mm to 1.0mm


  • Hero Member

    It's hard to photograph these etchings. They actually look better by eye. I tested out the last one with a continuity meter, and it seems that it would be functional (in the sense that the traces were isolated from what they should be and they connected the pads that they should.

    However, without the solder mask, I'm doubtful those closely packed micro-usb pads on the middle left near the edge would be solderable without bridging.

    I really hadn't considered I would ever need to do solder mask, I guess because the demo boards I've seen other people make don't seem to have it.

    So, maybe a better question is: what is the minimum isolation width so that I won't need solder mask? Perhaps that becomes the limit for prototyping.

    Anyhow, I'll look into it, but I really hadn't planned on taking that extra step.


  • Mod

    neverdie said in CNC PCB milling:

    It's hard to photograph these etchings.

    Do you have a flatbed scanner? Not sure if the copper reflects too much light, but the focus should be good.


Log in to reply
 

Suggested Topics

  • 4
  • 15
  • 20
  • 8
  • 17
  • 9

39
Online

11.5k
Users

11.1k
Topics

112.7k
Posts